Comparative Mitogenomic Analyses of Praying Mantises (Dictyoptera, Mantodea): Origin and Evolution of Unusual Intergenic Gaps

Hong Li Zhang^{1†}, Fei Ye^{2,3,4†}*

1. School of Life Sciences, Datong University, Datong 037009, China;

2. College of Ecology and Evolution, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China

3. State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, China

4. College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China

[†]These authors contributed equally to this work

*Corresponding author: feiyeemail@gmail.com

Figure S1. Evolutionary rates of 13 PCGs in the mitogenomes of fifteen Mantodea species. PCGs: protein-coding genes. ω : the ratio of *Ka/Ks* (*Ks*: synonymous nucleotide substitutions; *Ka*: nonsynonymous nucleotide substitutions)

Figure S2. Correlation between the percentage of four most frequently used codons and A+T content of all protein-coding genes.

Figure S3. Evaluation of codon bias in the mitogenomes of fifteen Mantodea species. ENC: effective number of codons; CBI: codon bias index; G+C%: GC content of codons; $(G+C)_3\%$: GC content of the third codon positions.

Figure S4. The secondary structure of repetitive unit sequence of TDRs. *Az: Anaxarcha zhengi; Tt: Tamolanica tamolana; THN: Theopompa* sp.-HN; *TYN: Theopompa* sp.-YN; *Hf: Hierodula formosana; Rv: Rhombodera valida; Hp: Hierodula patellifera; Rb: Rhombodera brachynota.*

Figure S5. Phylogenetic relationship among fifteen Mantodea species based on mtDNA using ML analyses. The ML bootstrap values were shown close to the nodes.

Figure S6. tRNA-like structure in LNCs of *Rhombodera valida* and *Rhombodera* sp. Anticodon is indicated with black nucleotides within purple circles.

Figure S7. The secondary structure of G1 in *Humbertiella nada* and *Theopompa* sp.-YN. G1: the gap sequence between *trnM* and *trnI*; *Hn: Humbertiella nada*; *TYN: Theopompa* sp.-YN.

Figure S8. Phylogenetic relationship among fourteen Mantodea species based on CCR using Bayesian inference (A) and Maximum Likelihood (B) analyses. The Bayesian posterior probabilities (BPP) and ML bootstrap values were shown close to the nodes; CCR: the relatively conserved region of CRs in each family.

Species	Locality	Sampling time	Voucher number
Hierodula patellifera	Chang'an, Xi'an, Shaanxi	2015.09	Mantodea-E068
Rhombodera brachynota	Mengla, Yunnan	2015.09	Mantodea-E067
Rhombodera valida	Mengla, Yunnan	2015.06	Mantodea-E071
Rhombodera sp.	Mengla, Yunnan	2015.06	Mantodea-E072

Table S1. Specimen information for the four sequenced mitogenomes in the present study.

Hierodula patellifera HpF1 ACACCAAAATGTAGGAAAGT trnQ-trnM This stud	dy
HpR1AGTTGAGAATAATCATCGTTCOIThis stude	dy
Rhombodera brachynotaRbF1AGGAGCTATTGGTGGATTAAND2This stude	dy
RbR1AGAGGGTGGAAGAAGTCAAACOIThis stude	dy
RbF2ACCCTTCTAATTTTCTCCACRThis students	dy
RbR2GGAAAAAATCCTAAAAAAGGAGGND2This stude	dy
RbF3TACATTACCCATAAATACTTCOIIThis students	dy
RbR3TACTACATCACGTCATCACTCOIIIThis students	dy
RbF4CAGTTTTATTAGCATCAGGTATCOIIIThis students	dy
RbR4ACATTGAAGCTGTTATTGAGATtrnFThis students	dy
RbF5TAACGTAACATCCCCACTTAND5This students	dy
RbR5GCTCATGTAGAAGCTCCTGTND4This students	dy
Rhombodera sp.RspF1AACATTCTACTCAATATCACTAACRThis stude	dy
RspR1 TTCTACTACAGATGGTAATCATC ND2 This stud	dy
RspF2 CGTGATAGGATAAATAATG trnI This stud	dy
RspR2 ATAACTTTGAAGGATATTAGTTT trnW This stud	dy
RspF3 ATTCTTTCATTTCATCAA ND2 This stud	dy
RspR3 AAAAGCGTGAGCAGTTACA COI This stud	dy
RspF4 TTTCTTATGTCCTTCTCTT ND6 This stud	dy
RspR4 GTAATTACTGTAGCTCCTC CytB This stud	dy
Rhombodera valida RvF1 CTGTAGAAAGTGGAGCAGGAA COI This stud	dy
RvR1ATCAGCTTTAACTCCGATGCCOIIThis students	dy
RvF2TAGAAGAAAACACCCATAAAND4LThis students	dy
RvR2TACTGTAGCTCCTCAAAAGGCytBThis students	dy
Universal TM-N200 ACCTTTATAARTGGGGTATGARCC trnM [19]	
C1-J1709 AATTGGWGGWTTYGGAAAYTG COI [19]	
C1-N2353 GCTCGTGTATCAACGTCTATWCC COI [19]	
C1-N2776 GGTAATCAGAGTATCGWCGNGG COI [19]	
C2-N3665 CCACAAATTTCTGAACATTG COII [19]	
N3-N5731 TTAGGGTCAAATCCRCAYTC ND3 [19]	
TN-J6155 TTTAATTGAARCCAAAAAGAGG trnN [19]	
N4-J9172 CGCTCAGGYTGRTACCCYCA ND4 [19]	
N4L-N9629 GTTTGTGAGGGWGYTTTRGG ND4L [19]	
CB-N11010 TATCTACAGCRAATCCYCCYCA CvtB [19]	
LR-J12888 CCGGTCTGAACTCARATCATGTA rrnL [19]	
SR-J14197 GTACAYCTACTATGTTACGACTT rrnS [19]	
SR-N14220 ATATGYACAYATCGCCCGTC rmS [19]	

Table S2. Primer sequences used for amplification of the four mitogenomes in the present study.

Species name	AT %					AT-skew				GC-skew							
	Mito	PCGs	rRNAs	tRNAs	CR	Mito	PCGs-J	PCGs-N	rRNAs	tRNAs	CR	Mito	PCGs-J	PCGs-N	rRNAs	tRNAs	CR
Anaxarcha zhengi	77.8	76.9	80.2	77.4	79.3	0.068	-0.049	-0.235	-0.104	0.016	0.057	-0.158	-0.068	0.247	0.317	0.127	-0.195
Creobroter gemmatus	76.0	75.4	77.4	75.6	79.9	0.039	-0.078	-0.216	-0.053	0.004	0.046	-0.206	-0.136	0.304	0.350	0.125	-0.338
Tenodera sinensis	75.5	74.7	77.8	75.5	78.9	0.058	-0.064	-0.240	-0.099	0.014	0.009	-0.217	-0.135	0.319	0.373	0.116	-0.383
Tamolanica tamolana	75.3	74.7	77.0	76.4	74.7	0.059	-0.071	-0.240	-0.109	0.018	0.072	-0.236	-0.166	0.314	0.416	0.086	-0.195
Hierodula formosana	75.8	75.2	78.3	76.7	78.0	0.047	-0.074	-0.220	-0.073	-0.006	0.093	-0.205	-0.154	0.285	0.399	0.174	-0.081
Hierodula patellifera	74.5	74.1	76.6	76.4	77.9	0.052	-0.070	-0.239	-0.105	0.015	0.055	-0.239	-0.191	0.318	0.420	0.159	-0.195
Rhombodera brachynota	74.8	75.1	77.6	76.2	80.3	0.043	-0.084	-0.225	-0.091	0.016	0.032	-0.204	-0.154	0.303	0.390	0.155	-0.167
Rhombodera sp.	75.7	75.0	77.6	76.3	79.8	0.037	-0.092	-0.226	-0.084	0.010	0.007	-0.209	-0.152	0.299	0.377	0.154	-0.074
Rhombodera valida	74.8	74.6	77.7	77.5	72.5	0.065	-0.062	-0.240	-0.088	0.012	0.122	-0.234	-0.177	0.316	0.404	0.145	-0.152
Mantis religiosa	76.7	76.1	77.7	76.0	81.1	0.027	-0.113	-0.216	-0.063	0.014	0.027	-0.188	-0.111	0.274	0.350	0.096	-0.273
Statilia sp.	75.3	74.7	77.6	75.4	76.2	0.024	-0.105	-0.212	-0.069	0.012	-0.038	-0.175	-0.120	0.273	0.325	0.097	-0.252
Humbertiella nada	70.1	68.8	72.9	73.1	73.7	0.011	-0.109	-0.203	-0.009	-0.021	-0.038	-0.262	-0.229	0.274	0.400	0.107	-0.272
<i>Theopompa</i> spYN	70.7	69.8	74.4	72.7	70.8	0.010	-0.121	-0.216	-0.037	0.011	-0.018	-0.276	-0.228	0.303	0.438	0.089	-0.362
Theopompa spHN	71.7	70.6	74.4	75.3	71.2	0.037	-0.067	-0.227	-0.049	0.004	-0.093	-0.219	-0.244	0.289	0.389	0.084	-0.133
Leptomantella albella	73.7	72.3	76.8	75.0	81.9	0.020	-0.107	-0.209	-0.023	0.011	0.050	-0.207	-0.170	0.224	0.377	0.108	-0.161

Table S3. Nucleotide composition of different molecules in the fifteen Mantodea mitogenomes.

AT skew: [A-T]/[A+T]. GC skew: [G-C]/[G+C]. Mito: the majority strand of mitogenome. PCGs-J: PCGs encoded by the majority strand. PCGs-N: PCGs encoded by the minority strand.

Table S4. The usage rate of codons ending with different nucleotides.

Feature	NNU	NNC	NNA	NNG
PCGs	45.0%	7.7%	42.9%	4.4%
PCGs-J	42.6%	10.9%	44.0%	2.4%
PCGs-N	48.7%	2.6%	41.1%	7.6%

PCGs-J: PCGs encoded by the majority strand. PCGs-N: PCGs encoded by the minority strand.

 Table S5. The usage rate of four most frequently used codons.

Species	UUU(F)	UUA(L)	AUU(I)	AUA(M)	SUM	Total	Rate (%)
Anaxarcha zhengi	299	471	338	272	1380	3709	37.2
Creobroter gemmatus	284	427	355	262	1328	3705	35.8
Tenodera sinensis	276	417	314	239	1246	3705	33.6
Tamolanica tamolana	287	424	316	237	1264	3705	34.1
Hierodula formosana	292	427	318	249	1286	3705	34.7
Hierodula patellifera	278	395	308	233	1214	3705	32.8
Rhombodera brachynota	289	428	318	234	1269	3705	34.3
Rhombodera valida	280	410	327	243	1260	3706	34.0
Rhombodera sp.	287	422	328	234	1271	3706	34.3
Mantis religiosa	292	453	335	243	1323	3707	35.7
Statilia sp.	290	420	332	228	1270	3705	34.3
Humbertiella nada	229	273	291	194	987	3706	26.6
<i>Theopompa</i> spYN	252	303	283	192	1030	3706	27.8
Theopompa spHN	258	307	283	226	1074	3706	29.0
Leptomantella albella	258	352	306	229	1145	3707	30.9

tRNA	INUC	AA	stem DHU	stem AC	stem T _{\U} C	stem DHU	loop AC	loop Variable	loop TψC	loop
	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	
trnI	76.4	93.3	83.3	80.0	100	75.0	85.7	80.0	50.0	
trnQ	67.1	53.3	100	80.0	30.0	40.0	85.7	50.0	100	
<i>trnM</i>	58.7	73.3	100	40.0	60.0	25.0	71.4	75.0	*	
trn W	72.2	80.0	100	70.0	87.5	50.0	100	100	*	
trnC	56.5	80.0	100	30.0	66.7	*	100	50.0	*	
trn Y	38.7	80.0	16.7	70.0	10.0	*	100	*	*	
trnL ^{UUR}	66.2	86.7	100	30.0	90.0	50.0	71.4	25.0	*	
trnK	68.1	53.3	66.7	87.5	75.0	75.0	100	55.6	42.9	
trnD	61.6	66.7	100	50.0	80.0	16.7	71.4	75.0	*	
trnG	59.4	80.0	75.0	50.0	100	20.0	85.7	25.0	*	
trnA	75.0	60.0	100	100	70.0	50.0	71.4	100	25.0	
trnR	65.7	80.0	66.7	80.0	66.7	28.6	100	20.0	11.1	
trnN	75.0	86.7	100	80.0	75.0	62.5	85.7	60.0	*	
trnS ^{AGN}	52.8	26.7	-	80.0	83.3	18.2	100	40.0	76.9	
trnE	70.6	66.7	100	100	50.0	66.7	100	75.0	*	
trnF	76.1	86.7	100	80.0	60.0	66.7	71.4	75.0	*	
trnH	61.8	53.3	100	80.0	62.5	60.0	85.7	50.0	*	
trnT	66.2	93.3	87.5	100	50.0	33.3	100	*	*	
trnP	62.1	66.7	62.5	90.0	62.5	20.0	71.4	50.0	*	
trnS ^{UCN}	77.5	92.9	100	80.0	100	57.1	71.4	50.0	57.1	
trnL ^{CUN}	49.3	46.7	66.7	30.0	37.5	50.0	85.7	50.0	14.3	
trn V	64.3	60.0	66.7	70.0	87.5	71.4	100	16.7	71.4	
AVE	64.6	71.2	85.3	70.8	68.4	42.6	87.0	51.0	20.4	

Table S6. The identical percentage of nucleotides in each tRNA family and different components in the secondary structure of tRNAs.

AVE: the average identical percent; -: the DHU arm was lost in $trnS^{4GN}$; *: identical percentage of nucleotides < 10.0%.

Domain	Helix	Total site	Conserved	Percentage	of Domain	Helix	Total site	Conserved	Percentage of
		(nt)	site (nt)	conserved si	te		(nt)	site (nt)	conserved site
				(%)					(%)
rrnL_I	H183	4	0	0	rrnL_V	H2455	35	22	62.9
	H235	21	10	47.6		H2507	27	26	96.3
	H461	4	0	0		H2520	31	8	25.8
	H533	6	1	16.7		H2547	10	10	100
	H563	8	6	75.0		H2588	15	12	80.0
rrnL_II	H579	12	7	58.3	rrnL_VI	H2646	26	15	57.7
	H589	18	4	22.2		H2675	10	5	50.0
	H671	28	21	75.0		H2735	10	2	20.0
	H687	25	14	56.0					
	H736	17	8	47.1	rrnS_I	H9	8	6	75.0
	H777	6	5	83.3		H17	6	6	100
	H812	12	7	58.3		H27	22	10	45.5
	H822	10	7	70.0		H39	17	9	52.9
	H837	30	4	13.3		H47	64	16	25.0
	H946	20	9	45.0		H367	23	18	78.3
	H991	21	6	28.6		H500	10	5	50.0
	H1057	16	8	50.0		H511	26	18	69.2
	H1087	9	8	88.9	rrnS_II	H567	8	2	25.0
	H1196	20	2	10.0		H577	36	5	13.9
rrnL_IV	H1648	39	9	23.1		H673	32	5	15.6
	H1764	19	5	26.3		H769	30	24	80.0
	H1775	6	6	100		H885	24	19	79.2
	H1792	16	11	68.8	rrnS_III	H921	35	30	85.7
	H1830	8	4	50.0		H939	10	10	100
	H1835	20	15	75.0		H944	25	21	84.0
	H1906	12	11	91.7		H960	8	7	87.5
	H1925	2	2	100		H984	14	11	78.6
	H1935	12	8	66.7		H1047	39	29	74.4
rrnL_V	H2023	10	8	80.0		H1068	12	1	8.3
	H2043	24	20	83.3		H1074	6	4	66.7
	H2064	25	25	100		H1113	10	4	40.0
	H2077	31	12	38.7		H1241	4	4	100
	H2246	8	5	62.5		H1303	16	6	37.5
	H2259	12	4	33.3		H1350	14	10	71.4
	H2347	13	6	46.2		H1399	34	30	88.2
	H2395	8	3	37.5		H1506	20	14	70.0

Table S7. The percent nucleotide identity in each helix of the secondary structure of *rRNAs* in fifteen Mantodea species.

Family	Speices	CR size (bp)	CR(-TDR) size (bp)	Poly T	CBS1	CBS2
Hymenopodidae	Anaxarcha zhengi	1761	639	214-221	449-473	523-530
	Creobroter gemmatus	708	708	305-313	508-531	581-588
Mantidae	Tenodera sinensis	706	706	294-303	513-537	587-594
	Tamolanica tamolana	954	523	-	-	-
	Hierodula formosana	840	779	397-406	598-621	673-680
	Hierodula patellifera	674	674	283-291	485-508	559-566
	Rhombodera brachynota	669	669	287-295	489-512	563-570
	Rhombodera valida	959	768	379-388	583-606	658-665
	Rhombodera sp.	672	672	280-288	481-504	556-563
	Mantis religiosa	639	639	254-262	450-474	524-531
	Statilia sp.	652	652	258-272	459-482	534-541
Liturgusidae	Humbertiella nada	866	866	282-291	483-506	556-563
	Theopompa spYN	1436	904	321-328	522-545	595-602
	Theopompa spHN	1775	879	314-320	517-540	590-597
Tarachodidae	Leptomantella albella	684	684	269-277	475-498	549-556

Table S8. The size of the CRs and the position of the three common elements in the CRs.

CR: control region; -TDR: redundant tandem repeats were removed; CBS: conserved block sequence.