Classifier	Species	Prediction engine	Features used in the classifier	PMID
RFAthM6A	A.thaliana	RF	[1] Position-specific nucleotide sequence profile; [2]	29340952
			Position-specific dinucleotide sequence profile; [3]	
			K-nucleotide frequencies; [4] K-spaced nucleotide	
			pair frequencies	
RAM-NPPS	S.cerevisiae; H.sapiens;	SVM	[1] Nucleotide pair position specificity	28440291
	A.thaliana			
RAM-ESVM	S.cerevisiae	SVM	[1] Pseudo nucleotide composition; [2] Motif	28079126
			features; [3] K-mer features	
M6ATH	A.thaliana	SVM	[1] Nucleotide chemical property; [2] Nucleotide	27590733
			composition	
AthMethpre	A.thaliana	SVM	[1] Positional binary encoding; [2] Position-	27550167
			independent Kmer frequency	
RNAMethPre	H.sapiens; M.musculus	SVM	[1] Positional binary encoding; [2] Nucleotide k-mer	27723837
			frequency; [3] Relative position in mRNA; [4]	
			Stability of the local structure	
TargetM6A	S.cerevisiae	SVM	[1] Position-specific nucleotide sequence profile; [2]	27552763
			Position-specific dinucleotide sequence profile	
RNA-MethylPred	S.cerevisiae	SVM	[1]Bi-profile Bayes; [2] Dinucleotide composition;	27338301
			[3] K-nearest neighbor encoding	
M6A-HPCS	S.cerevisiae	SVM	[1] Physical-chemical property; [2] Pseudo	27193216
			dinucleotide composition; [3] auto-covariance; [4]	
			cross-covariance transformations	
MethyRNA	H.sapiens; M.musculus	SVM	[1] Chemical property; [2] Nucleotide frequency	26912125
SRAMP	Mammalian	RF	[1] Positional binary encoding; [2] K-nearest	26896799

Table S1. Summary of existing m⁶A predictors for different species.

			neighbor encoding; [3]K-spaced nucleotide pair	
			frequencies	
pRNAm-PC	S.cerevisiae	SVM	[1] Physical-chemical property; [2] Pseudo	26748145
			dinucleotide composition; [3] auto-covariance; [4]	
			cross-covariance transformations	
M6Apred	S.cerevisiae	SVM	[1] Chemical property; [2] Accumulated nucleotide	26343792
			frequency	
iRNA-Methyl	S.cerevisiae	SVM	[1] pseudo dinucleotide composition	26314792

Note: RF: random frost; SVM: support vector machine; *A.thaliana: Arabidopsis thaliana; S.cerevisiae: Saccharomyces cerevisiae; H.sapiens: Homo sapiens; M.musculus: Mus musculus.*

Sliding window size(<i>S</i>)	1	2	4	6	8	10	12	14	
AUC Value	0.7602	0.7639	0.7358	0.6999	0.6884	0.6575	0.6555	0.6461	
AUC01 Value	0.0249	0.0264	0.0220	0.0200	0.0173	0.0163	0.0141	0.0131	

Table S2. Optimized sliding window sizes for the Saccharomyces cerevisiae dataset.

Note: For the *Saccharomyces cerevisiae* dataset, the sequence window size (*W*) was fixed as 51 [16]. The sliding window size (*S*) of 2, corresponding to the largest AUC and AUC01 values, was selected for the development of the algorithms.

1				1			
Sliding window size(S)	2	4	6	8	10	12	14
AUC Value	0.8865	0.8914	0.8958	0.8981	0.8973	0.8953	0.8946
AUC01 Value	0.0503	0.0489	0.0491	0.0511	0.0488	0.0487	0.0477

Table S3. Optimized window sizes for the Arabidopsis thaliana dataset.

Note: For Arabidopsis thaliana dataset, the sequence window size (W) was fixed as 101 [17].

The sliding window size (S) of 8, corresponding to the largest AUC and AUC01 values, was selected for the development of the algorithms.

		Sequence window size (W)							
AUC/AUCUI		51	61	71	81	91	101		
Sliding window size (S)	1	0.8031/0.0323	0.8035/0.0323	0.8036/0.0330	0.8041/0.0336	0.8037/0.0326	0.8031/0.0305		
	2	0.8034/0.0332	0.8041/0.0332	0.8043/0.0335	0.8056/0.0340	0.8044/0.0324	0.8033/0.0319		
	4	0.7998/0.0319	0.8014/0.0310	0.8014//0.0326	0.8023/0.0323	0.8022/0.0313	0.8024/0.0319		
	6	0.7893/0.0318	0.7902/0.0303	0.7908/0.0317	0.7914/0.0305	0.7913/0.0306	0.7910/0.0307		
	8	0.7693/0.0285	0.7694/0.0273	0.7700/0.0294	0.7696/0.0282	0.7694/0.0276	0.7686/0.0293		
	10	0.7543/0.0256	0.7532/0.0257	0.7525/0.0250	0.7526/0.0266	0.7518/0.0265	0.7511/0.0259		
	12	0.7436/0.0250	0.7425/0.0255	0.7411/0.0256	0.7406/0.0251	0.7402/0.0248	0.7388/0.0242		
	14	0.7382/0.0236	0.7381/0.0232	0.7363/0.0241	0.7347/0.0240	0.7342/0.0240	0.7328/0.0234		

Table S4. Optimized window sizes for the Mammalian full transcript dataset.

Note: The sliding window size (*S*) of 2 and the sequence window size (*W*) of 81, corresponding to the largest AUC and AUC01 values, was selected for the development of the algorithms.

		Sequence window size (W)								
AUC/AUCUI		51	61	71	81	91	101			
Sliding window size (S)	1	0.7530/0.0251	0.7560/0.0254	0.7532/0.0252	0.7547/0.0249	0.7537/0.0256	0.7506/0.0255			
	2	0.7584/0.0255	0.7606/0.0262	0.7586/0.0255	0.7573/0.0253	0.7552/0.0252	0.7547/0.0251			
	4	0.7546/0.0244	0.7549/0.0251	0.7543/0.0257	0.7543/0.0242	0.7540/0.0241	0.7540/0.0242			
	6	0.7428/0.0250	0.7416/0.0233	0.7410/0.0247	0.7408/0.0235	0.7403/0.0235	0.7391/0.0237			
	8	0.7169/0.0209	0.7147/0.0212	0.7128/0.0209	0.7125/0.0218	0.7114/0.0208	0.7100/0.0201			
	10	0.6980/0.0191	0.6944/0.0188	0.6922/0.0201	0.6904/0.0192	0.6889/0.0190	0.6880/0.0183			
	12	0.6844/0.0180	0.6795/0.0180	0.6756/0.0173	0.6728/0.0170	0.6710/0.0163	0.6698/0.0179			
	14	0.6762/0.0180	0.6709/0.0172	0.6671/0.0173	0.6626/0.0153	0.6600/0.0165	0.6580/0.0163			

Table S5. Optimized window sizes for the Mammalian mature mRNA dataset.

Note: The sliding window size (S) of 2 and the sequence window size (W) of 61, corresponding to the largest AUC and AUC01 values, was selected for the development of the algorithms.

191

Table 50. Optimized window sizes of th	it DORU-Dascu classifier for	manninanan u
Prediction mode	Window size	
Full transcript mode	301	

Mature mRNA mode

Table S6. Optimized window sizes of the BGRU-based classifier for mammalian dataset.

Species ¹	Classifiers ²	Acc ³	Sn ³	Sp ³	MCC^3	AUC ³	AUC01 ³
Mammalia	R F <i>enac</i>	86.74	51.89	90.21	0.353	0.828	0.0368
Full transcript	R <i>FKmer</i>	85.75	41.52	90.17	0.273	0.790	0.0284
	RF <i>KSNPF</i>	85.71	40.71	90.20	0.268	0.793	0.0264
	R <i>FPseDNC</i>	85.14	35.40	90.10	0.224	0.751	0.0242
	UGRU	87.97	66.61	90.10	0.455	0.900	0.0446
	BGRU	88.11	68.16	90.10	0.466	0.904	0.0459
	BERMP	88.34	70.72	90.10	0.484	0.907	0.0509
Mammalia	RFENAC	85.71	41.49	90.12	0.272	0.773	0.0268
Mature mRNA	R <i>FKmer</i>	84.24	25.56	90.15	0.143	0.678	0.0154
	R F _{KSNPF}	84.03	22.59	90.16	0.117	0.642	0.0135
	R <i>FPseDNC</i>	83.90	21.91	90.09	0.110	0.633	0.0130
	UGRU	86.18	47.71	90.00	0.319	0.826	0.0293
	BGRU	86.20	47.66	90.05	0.318	0.827	0.0298
	BERMP	86.32	49.42	90.00	0.331	0.829	0.0317
<u>C1</u>	R F _{ENAC}	69.32	48.31	90.34	0.426	0.801	0.0348
Saccharomyces cerevisiae	R <i>FKmer</i>	60.39	30.43	90.33	0.259	0.710	0.0182
Mature mKNA	RF <i>KSNPF</i>	57.25	24.15	90.34	0.193	0.686	0.0146
	R <i>FPseDNC</i>	57.73	24.64	90.82	0.206	0.685	0.0152
	UGRU	53.86	17.39	90.34	0.113	0.622	0.0108
	BGRU	58.21	26.09	90.34	0.214	0.655	0.0149
	BERMP	68.84	47.34	90.34	0.417	0.800	0.0347
Arabidopsis thaliana Mature mRNA	RFENAC	80.86	71.53	90.19	0.628	0.900	0.0479

Table S7. Prediction results of different classifiers via independent tests.

R <i>FKmer</i>	87.08	84.18	90.10	0.743	0.939	0.0657	
R <i>FksNPF</i>	83.97	77.75	90.19	0.685	0.925	0.0586	
R <i>FPseDNC</i>	83.85	77.51	90.19	0.683	0.923	0.0568	
UGRU	85.77	81.10	90.43	0.718	0.930	0.0593	
BGRU	87.32	84.21	90.43	0.748	0.936	0.0613	
BERMP	87.20	84.21	90.19	0.745	0.934	0.0607	

Note: ¹ The training and independent datasets were depicted in Figure S1. ²RF_{ENAC}=RF classifier with the ENAC encoding, RF_{KSNPF}= RF classifier with the encoding of K-spaced nucleotide pair frequencies, RF_{PscDNC}=RF classifier with the encoding of Pseudo dinucleotide composition, UGRU= the unidirectional GRU-based RNN classifier with word embedding, BGRU= the bidirectional GRU-based RNN classifier with word embedding, BERMP= BGRU-based Ensemble RNA Methylation site Predictor that integrating BGRU and RF_{ENAC}. ³Acc=accuracy, Sn=sensitivity, Sp=specificity, MCC=Matthew's Correlation Coefficient, AUC=area under the receiver operating characteristic, AUC01 = AUC with a <10% false positive rate (*i.e.*, specificity>90%).

Figure S1. The flowchart of dataset process for *Mammalia* (A), *Saccharomyces cerevisiae* (B) and *Arabidopsis thaliana* (C). All the datasets were derived from previous publications as well as the data processing flow for *Mammalia* (A) and *Arabidopsis thaliana* (C).

Figure S2. Construction of the ENAC encoding.

Figure S3. Performance comparison of the seven m⁶A predictors using *Mammalia* full transcript dataset. The AUC (A) and AUC01 values (B) were calculated via five-fold cross validation (Figure S1A). For each algorithm, the AUC or AUC01 values between the adjacent data sets were statistically compared and the horizontal line represented no statistical difference (P > 0.05). The P value was calculated by a paired student's t-test.

Figure S4. Relationship between data size and prediction performance of classifiers using the *Mammalia* **full transcript dataset.** The AUC values (**A**) and AUC01 values (**B**) were calculated using four different data sizes (all, one-fifth, one-tenth and one-fiftieth) via five-fold cross validation (Figure S1A).

Figure S5. Performance comparison of the seven m⁶A predictors using the *Arabidopsis thaliana* dataset. The AUC (A) and AUC01 values (B) were calculated via five-fold cross validation (Figure S1C). For each algorithm, the AUC or AUC01 values between the adjacent data sets were statistically compared and the horizontal line represented no statistical difference (P > 0.05). The P value was calculated by a paired student's t-test.

Figure S6. The performance comparison of SRAMP and BERMP on the golden standard dataset. The gene identifiers and site positions were in lines with the original publication by Liu *et al.* [25]. Experimental reference sites, the SRAMP prediction results and BERMP prediction results were denoted in the Experiment, SRAMP and BERMP columns, respectively. Experimentally identified m⁶A sites and non-m⁶A sites were indicated by deep red and grey boxes, respectively. Predicted above high confidence m⁶A sites and non-m⁶A sites were indicated by red and grey boxes, respectively.