FOXA1 is Prognostic of Triple Negative Breast Cancers by Transcriptionally Suppressing SOD2

and IL6

Xiaofeng Dai^{2^{\Box}}, Hongye Cheng¹, Xiao Chen¹, Ting Li¹, Jia Zhang^{2,3}, Guoyin Jin^{2,3}, Dongyan Cai^{2,3}, Zhaohui Huang^{2,3^{\Box}}

- 1. School of Biotechnology, Jiangnan University, Wuxi, China
- 2. Wuxi School of Medicine, Jiangnan University, Wuxi, China
- 3. Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, China

Supplementary Tables

Supplementary Table S1. Breast cancer cell lines, subtypes and subtyping markers.

Cell lines		ED	DD	HED?	BRCA1	Culture media	Culture
		EK	mutation			conditions	
Luminal A	MCF7	+	+	-	-	DMEM, 10% FBS	37℃, 5% CO ₂
	T47D	+	+	-	-	DMEM, 10% FBS	37℃, 5% CO ₂
Luminal B	BT474	+	+	+	-	RPMI 1640, 20% FBS	37℃, 5% CO ₂
Her2 Positive	SKBR3	-	-	+++	-,	RPMI 1640, 10% FBS	37℃, 5% CO ₂
						L15, 10% FBS and 10	37℃, 5% CO ₂
	MDAMB453	-	-	+	-	µg/mL insulin	
Triple						F12, 10% FBS, 10 μg/mL	37℃, 5% CO ₂
Negative	CLIM 150DT					insulin, 10 mmol/l HEPES,	
	SUM159P1	-	-	-	-	and 20 ng/mL epidermal	
						growth factor	
	MDAMB231	-	-	-	-	DMEM, 10% FBS	37℃, 5% CO ₂
	HCC1937	-	-	-	+	RPMI 1640, 10% FBS	37℃, 5% CO ₂
						F12, 10% FBS, 10 μg/mL	37℃, 5% CO ₂
						insulin, 10 mmol/l HEPES,	
	SUM149PT	-	-	-	+	and 20 ng/mL epidermal	
						growth factor	
						L15, 10% FBS and 10	37℃, 5% CO ₂
	MDAMB436	-	-	-	+	µg/mL insulin	

Supplementary Table S2. The sequences of the primers used in Real time PCR and ChIP assays and sgRNAs used in CRISPR

mediated gene up-regulation.

Primer name	Sequences (5'→3')	Assay

GAPDH-F	CCCACTCCTCCACCTTTGAC	qRT-PCR
GAPDH-R	ATGAGGTCCACCACCCTGTT	qRT-PCR
<i>FOXA1-</i> F	GAAGATGGAAGGGCATGAAA	qRT-PCR
FOXA1-R	GCCTGAGTTCATGTTGCTGA	qRT-PCR
SOD2-F	GACAAACCTCAGCCCTAACG	qRT-PCR
SOD2-R	TTGGACACCAACAGATGCAG	qRT-PCR
<i>IL6-</i> F	ACTCACCTCTTCAGAACGAATTG	qRT-PCR
<i>IL6-</i> R	CCATCTTTGGAAGGTTCAGGTTG	qRT-PCR
MYC-F	GTCAAGAGGCGAACACACAAC	qRT-PCR
MYC-R	TTGGACGGACAGGATGTATGC	qRT-PCR
<i>HER2-</i> F	TGTGACTGCCTGTCCCTACAA	qRT-PCR
HER2-R	CCAGACCATAGCACACTCGG	qRT-PCR
<i>MLPH</i> -F	TGCCCATCTGAACGAGACC	qRT-PCR
<i>MLPH</i> -R	GAGCCGATCTTCACGACTCTG	qRT-PCR
<i>XBP1-</i> F	CCCTCCAGAACATCTCCCCAT	qRT-PCR
<i>XBP1-</i> R	ACATGACTGGGTCCAAGTTGT	qRT-PCR
GATA3-F	GCCCCTCATTAAGCCCAAG	qRT-PCR
GATA3-R	TTGTGGTGGTCTGACAGTTCG	qRT-PCR
<i>KIAA1324-</i> F	GATGACTGCACGGTGTCTTTG	qRT-PCR
<i>KIAA1324-</i> R	TGAGAGCCCCATTCTCCATTG	qRT-PCR
ESR-F	CAGGCATTCGGTTTGATGAGT	qRT-PCR
<i>ESR</i> -R	TTGGACGAAGTACAGTTCCCG	qRT-PCR
<i>CA12</i> -F	AGTGAACGGTTCCAAGTGGAC	qRT-PCR
<i>CA12</i> -R	CCACACGACGGGTACTTCT	qRT-PCR
<i>PSAT</i> -F	TGCCGCACTCAGTGTTGTTAG	qRT-PCR
<i>PSAT</i> -R	GCAATTCCCGCACAAGATTCT	qRT-PCR
<i>MYB</i> -F	GAGGTGGCATAACCACTTGAA	qRT-PCR
<i>MYB</i> -R	AGGCAGTAGCTTTGCGATTTC	qRT-PCR
SCNN1A-F	TCTGCACCTTTGGCATGATGT	qRT-PCR
SCNN1A-R	GAAGACGAGCTTGTCCGAGT	qRT-PCR
AGR2-F	GTCAGCATTCTTGCTCCTTGT	qRT-PCR
AGR2-R	GGGTCGAGAGTCCTTTGTGTC	qRT-PCR
<i>FBP1-</i> F	GAACCGGAGAAAAGGGGTAAA	qRT-PCR
<i>FBP1-</i> R	GTTCCAACGGACACAAGGCA	qRT-PCR
<i>MYO5C</i> -F	TCGTGGGCGAGAATGACCT	qRT-PCR
MYO5C-R	GGCAACTGCTTGTAAGGATTCA	qRT-PCR
siFOXA1-F	GGACUUCAAGGCAUACGAATT	siRNA
siFOXA1-R	UUCGUAUGCCUUGAAGUCCAG	siRNA
siSOD2-F	UUCGUAUGCCUUGAAGUCCAG	siRNA
siSOD2-R	AGUGGAAUAAGGCCUGUUGTT	siRNA
<i>siMYC-</i> F	ACAGCCCACUGGUCCUCAATT	siRNA
<i>siMYC-</i> R	UUGAGGACCAGUGGGCUGUGA	siRNA
<i>siIL6-</i> F	GGAGUUUGAGGUAUACCUATT	siRNA
<i>siIL6-</i> R	UUCGUAUGCCUUGAAGUCCAG	siRNA
GAPDH siRNA	UGACCUCAACUACAUGGUUT	siRNA
NC siRNA	UUCUCCGAACGUGUCACGUTT	siRNA

SOD2-F	GTTCCAGTGAGCCGACAT	ChIP
SOD2-R	AACAGTCAGGCGAAGAGG	ChIP
<i>IL6-</i> F	GGTCCTTGATGTAACAGCCAG	ChIP
<i>IL6</i> -R	AGGATTTCCTGCACTTACTTGTG	ChIP
FOXA1-sg1	GCTCGCACCTACAAAGCCCG	CRISPR
FOXA1-sg2	AAGCCCGAGGTGCACCTGCA	CRISPR
FOXA1-sg3	ACACGCCACCTTCCGAGCGC	CRISPR

Supplementary Table S3. Phenotypic information of 82 collected samples.

Features	N
Subtypes	
Luminal A	20
Luminal B	12
Her2+	21
TNBC	29
Ages (years)	
< 56	41
≥ 56	41
Tumor size (cm)	
≤2	31
≥ 2	51
Grade	
Ι	3
II	41
III	38
Stage	
I + II	37
III + IV	45
Histology	
Invasive ductal carcinoma	76
Others	6

Supplementary Table S4. Evaluation method for the nuclear marker expression in breast cancer tissues.

Score	Staning intensity	Percentage of nuclear expression for marker protein
0	0-3	<5
1	1	<80
1	2	<40
2	1	$\geq \! 80$
2	2	40-80
2	3	<40
3	2	$\geq \! 80$
3	3	≥ 40

Supplementary Table S5. Public datasets used for statistical assessment of candidate markers for breast cancer subtyping.

	METABRIC	TCGA	GSE24450	E-MTAB-181	
	cBioPortal for	тсса	Gene Expression	AmouEumage	
Data nortal	Cancer Genomics	ICUA	Omnibus	Anayexpress	
Data portai	www.cbioportal.or	www.tcga.cancer.gov	www.ncbi.nlm.nih.gov/g	www.ebi.ac.uk/arrayexpress/experimen	
	g	/dataportal	eo/	ts/E-MTAB-181/	
Gene number	24368	17814	48803	23886	
Sample number	1904	502	183	56	
Sample type	Clinical samples	Clinical samples	Clinical samples	Cell lines	
		Agilent 244 K	Illumine HumanUT 12		
Detection approach	Illumina Human v3	Custom Gene	V3.0 expression	Affymetrix GeneChip Human Exon 1.0	
	microarray	Expression		ST Array	
		G4502A-07-3	beaucinp		

Supplementary Table S6. Clinical information of the 3951 breast cancer samples collected in KM plotter and used in this

study. 'NA' represents 'not available'.

Features	N
ER status	
ER positive	2565
ER negative	1214
NA	172
PR status	
PR positive	954
PR negative	1028
NA	1969
HER2 status	
HER2 positive	416
HER2 negative	1456
NA	1979
Lymph node status	
Lymph node positive	1459
Lymph node negative	2259
NA	231
TP53 status	
TP53 positive	232
TP53 negative	363
NA	3356
Grade	
Ι	378
П	1077
III	1090
NA	1406

Pietenpol subtype	
Basal-like 1	239
Basal-like 2	97
Immunomodulatory	290
Mesenchymal	229
Mesenchymal stem-like	115
Luminal androgen receptor	276
NA	2705

Supplementary Table S7. The 18 genes transcriptionally correlated with FOXA1. METABRIC, TCGA and GSE24450 were

used to conduct the Pearson correlation analysis. KM plotter was used to compute the 5 years survival which includes 3951

patients.

	Pearson correlation					KM	plotter	
Gene	cor_MET ABRIC	p_META BRIC	cor_GSE2 4450	p_GSE2 4450	cor_TCGA	p_TCGA	p(5year)	HR(5year)
FOXA1	1	0	1	0	1	0	8.80E-09	0.69
IL6DBP	-0.5815	1.12E-172	0.5549	3.63E-16	-0.5610	3.37E-92	8.60E-08	1.39
SOD2	-0.5747	8.45E-168	-0.6457	5.67E-23	-0.6104	2.16E-47	3.60E-08	1.43
ESR1	0.7241	<1E-300	0.7328	4.32E-32	0.7693	2.18E-89	<1E-16	0.58
CA12	0.7440	0	0.7029	1.40E-28	0.7673	1.15E-88	<1E-16	0.56
MYB	0.6799	1.53E-258	0.7550	5.32E-35	0.7051	5.04E-69	<1E-16	0.54
MLPH	0.8985	0.00E+00	0.8252	9.07E-47	0.8931	6.81E-158	1.20E-11	0.64
MYO5C	0.6461	1.82E-225	0.8143	1.25E-44	0.6190	4.67E-49	<1E-16	0.58
DNALI1	0.6086	2.45E-193	0.6433	9.26E-23	0.7132	2.68E-71	1.3E-13	0.52
KIAA1324	0.7017	2.43E-282	0.8335	1.61E-48	0.6959	1.44E-66	4.90E-14	0.61
XBP1	0.7969	0	0.8394	8.28E-50	0.8287	3.13E-115	2.20E-16	0.58
GATA3	0.7810	0	0.8344	1.05E-48	0.7989	3.47E-101	7.00E-12	0.64
SLC22A5	0.6297	8.05E-21	0.7066	5.36E-29	0.6806	1.24E-62	<1E-16	0.54
WWP1	0.5751	4.27E-168	0.6298	1.30E-21	0.6009	1.34E-45	0.02	1.16
FBP1	0.6765	6.00E-255	0.7626	4.45E-36	0.7478	6.65E-82	2.80E-09	0.68
LRBA	0.6336	3.34E-214	0.7161	4.46E-30	0.6084	5.18E-47	7.40E-08	0.71
AGR2	0.6161	1.98E-199	0.6659	8.23E-25	0.8297	9.16E-116	8.00E-03	0.84
CRIP1	0.6033	3.69E-189	0.6946	1.10E-27	0.6063	1.28E-46	2.90E-03	0.82
PSAT1	-0.7091	6.43E-291	-0.7758	4.87E-38	-0.7154	6.43E-72	4.30E-07	1.56

Supplementary Table S8. IHC staining results of SOD2 in breast cancer tissues.

Subture	N -	SOD2 ex	n voluo	
Subtype	1	Score 0-1	Score 2-3	<i>p</i> value

TNBC	29	5	24	1 25E 05
non-TNBC	53	28	25	1.55E-05
Luminal	32	14	18	0.285.02
non-Luminal	50	19	31	9.28E-03

Supplementary Table S9. Correlation analysis among FOXA1, SOD2 and IL6 at the transcription level. Gene expression

Data set	FOXA1, SOD2		FOXA1, IL6		SOD2, IL6	
	cor	р	cor	р	cor	р
METABRIC	-0.575	8.45E-168	-0.245	1.73E-27	0.304	1.73E-27
TCGA	-0.61	2.16E-47	-0.17	1.30E-08	0.186	4.80E-10
GSE24450	-0.646	5.67E-23	-0.55	1.08E-15	0.419	3.42E-09

Supplementary Figures

Supplementary Fig S1. *ER*, *FBP1*, *AGR2*, *MYO5C*, *WWP1* and *LRBA* expression profiles across breast cancer cell lines of different subtypes. (**A**) *ER* and (**B**) *FBP1* gene expression can differentiate luminal from non-luminal cell lines, (**C**) *AGR2* and (**D**) *MYO5C* gene expression can differentiate the luminal A from the rest cells, (**E**) *WWP1* and (**F**) *LRBA* gene expression can differentiate the luminal B cells at the transcriptional level.

Supplementary Fig S2. Gene expression profile of (**A**) SOD2 and (**B**) IL6 across 56 breast cancer cell lines using E-MTAB-181 data. The 56 cell lines are stratified into Triple Negative and Non-Triple Negative subgroups, with the significance being evaluated using student's T test.

Supplementary Fig S3. Kaplan–Meier survival curves on the association between FOXA1 (probe is 204667_at) expression and breast cancer patient RFS in each molecular subtype using KM plotter. The subtypes are (**A**) luminal A, (**B**) luminal B, (**C**) HER2 positive, and (**D**) TNBCs.

Supplementary Fig S4. Clinical evidence evaluating the breast cancer subtyping potential of SOD2 and IL6. *SOD2* mRNA expression stratified by breast cancer subtypes using (**A**) METABRIC data and (**B**) TCGA data. (**C**) Patients 5 years' relapse free survival Kaplan–Meier curves of *SOD2* expression (probe is 215223_s_at) produced using KM plotter. (**D**) IHC staining of SOD2 in TNBC and non-TNBC tumors. *IL6* mRNA expression stratified by breast cancer subtypes using (**E**) METABRIC data and (**F**) TCGA data. Patients 5 years' relapse free survival Kaplan–Meier curves of (**G**) *IL6* (probe is 205207_at) and (**H**) *IL6DBP* (probe is 212501_at) produced using KM plotter.

Supplementary Fig S5. The knocking down efficiencies. The knocking down efficiencies of *FOXA1* in (**A**) MCF7 and (**B**) BT474 cells, that of *SOD2* in (**C**) SUM149PT and (**D**) MDAMB436 cells, and that of *IL6* in (**E**) SUM149PT and (**F**) MDAMB436 cells.

Supplementary Fig S6. Regulatory relationship between MYC and FOXA1 in HER2 positive cells. (**A**) Hypothesis of the triangle negative feedback loop involving FOXA1, HER2 and MYC. (**B**) The expression of MYC and HER2 in SKBR3 and MDAMB453 cells detected by q-PCR and western blotting. MYC shows distinct expression in these two HER2 positive cell lines. (**C**) The expression of FOXA1 and HER2 in SKBR3 cells transfected with siMYC that is detected by q-PCR and western blot. (**D**) The expression of MYC and HER2 in SKBR3 cells transfected with si*FOXA1* and detected by q-PCR and western blot.

