Supplementary Materials

A

B

C

Figure S1. Functional verification of Utx-siRNA. (A) Schematic representation of Utx-siRNA. Two siRNAs were designed to target different regions of Utx. (B) Schematic illustration of Utx-siRNA injected into zygotes and in vitro culture. (C) qPCR results showing mRNA level of Utx in si-Utx-injected 2-cell embryos. Error bars indicate SEM. Values were normalized to Gapdh. ${ }^{* *} P<0.01$ by the two-tailed Student's t-test. (D) qPCR results showing mRNA levels of maternal effector genes in si-Utx-injected 2-cell embryos. Error bars indicate SEM. All values were normalized to Gapdh. **P <0.01 by the two-tailed Student's t-test.

A

B

C

D

E

Figure S2. Functional verification of Utx-mRNA. (A) Schematic representation of pcs2-UTX plasmid. (B) The sketch of in vitro transcribed Utx-mRNA integrity was confirmed by electrophoresis with formaldehyde gels. M, marker. (C) Schematic illustration of Utx-mRNA injected into zygotes and in vitro culture. (D) qPCR results showing mRNA level of Utx in Utx-mRNA-injected 2-cell embryos. Error bars indicate SEM. Values were normalized to Gapdh. ${ }^{* *} P<0.01$ by the two-tailed Student's t-test. (E) qPCR results showing mRNA levels of maternal effector genes in Utx-mRNAinjected 2-cell embryos. Error bars indicate SEM. All values were normalized to Gapdh. * $P<0.05$ by the two-tailed Student's t-test.

A

B

Figure S3. Identification of Utx+ mice. (A) PCR analysis of the Utx+ mice. Genomic DNA was amplified with specific primers (Table S2) detecting the Utx+ mice. M, marker. 1-15, PCR templates were Utx+ mice genomic DNA. $\mathrm{H}_{2} \mathrm{O}$, PCR template was $\mathrm{H}_{2} \mathrm{O}$. P, PCR template was pcs2-UTX plasmids. (B) Sanger sequencing alignment of Utx+ mice PCR products. (C) Body weight of Utx+ mice for 3 consecutive weeks. δ^{7} and 우 indicate the male and female, respectively. N, total number of mice in each group. Error bars indicate SEM. (D) qPCR results showing mRNA levels of maternal effector genes in Utx+ mice 2-cell embryos. Error bars indicate SEM. All values were normalized to Gapdh. *P <0.05 by the two-tailed Student's t-test.

Figure S4. Functional verification of Zscan4d mRNA. (A) Schematic representation of pcs2-ZSCAN4D plasmid. (B) The sketch of in vitro transcribed Zscan4d mRNA integrity was confirmed by electrophoresis with formaldehyde gels. M, marker. (C) qPCR results showing mRNA levels of Zscan4d in Zscan4d-mRNA-injected 2-cell embryos. Error bars indicate SEM. Values were normalized to Gapdh. ${ }^{* *} P<0.01$ by the two-tailed Student's t-test. (D) Immunofluorescence of Myc in Zscan4d-mRNAinjected embryos at the 2-cell stage (left), and quantification of Myc signal intensity (right). For the immunofluorescence images, bar graphs show the relative intensities of Myc/DAPI signal ratios. Error bars indicate SEM. Representative images from \geqslant 20 embryos analyzed using Image J; independent micromanipulations for each condition are shown. Scale bar, $20 \mu \mathrm{~m} .{ }^{* * *} P<0.001$ by the two-tailed Student's t-test.

Figure S5. Bright field representative images of the embryos of the rescue (Utx-siRNA+Zscan4d-mRNA), and the control, Utx-siRNA, Utx-mRNA, and Utx+ mice, respectively at different culture times. Scale bar, $100 \mu \mathrm{~m}$.

Figure S6. Development rates in the control, rescue, Utx-mRNA-injected, Utx-siRNAinjected and Utx+ mice groups, respectively. The efficiency was calculated based on the number of 2-cell embryos. $n \geqslant 3$.

Table S1．Developmental rate of embryos

Groups	No．of replicates	No．of 2－cell embryos	\％4－cell per 2－cellıS．D．	\％8－cell per 2－cell士S．D．	\％morula per 2－cell士S．D．	\％blastocyst per 2－cell士S．D．
Control	3	228	98.33 ± 0.7	96.06 ± 2.68	93.53 ± 2.33	88.1 ± 3.02
Rescue	3	209	$78.8 \pm 8.92^{\text {n．s．}}$	$65.63 \pm 8.59^{\text {n．s．}}$	$62.93 \pm 6.27^{*}$	$44.1 \pm 9.34 *$
Utx－mRNA injection	3	284	$43.66 \pm 11.59^{*}$	$41.43 \pm 13.24{ }^{*}$	$40.33 \pm 14.24 *$	$33.2 \pm 13.59^{*}$
Utx－siRNA injection	3	278	$51.93 \pm 15.59^{*}$	$49.3 \pm 14.85^{*}$	$41.53 \pm 10.54 *$	$32.5 \pm 4.3^{* *}$
$U t x+$ mice	3	176	$84.99 \pm 0.09^{*}$	$83.1 \pm 1.98{ }^{\text {n．s．}}$	$83.1 \pm 1.98^{\text {n．s．}}$	$55.98 \pm 3.12^{* *}$

${ }^{*} P<0.05,{ }^{* *} P<0.01$ as compared with the control group，by two－tailed Student＇s t－test．n．s．，not significant．

Table S2. All primers used in this study

Gene	Application	Sequence (5' - 3')
Utx	Real-time qPCR	Forward-TATTGGCCCAGGTGACTGTGAA Reverse-CAAATCTCCAGGTCGCTGAATAAAC
MuERVL	Real-time qPCR	Forward-CTCTACCACTTGGACCATATGAC Reverse-GAGGCTCCAAACAGCATCTCTA
Zscan4d	Real-time qPCR	Forward-TGCTTGAAGCCTCCTGTCAT Reverse-GTGTTGGCCTTGTTGCAGAT
Tcstv1	Real-time qPCR	Forward-GGATCCCTGAAGGTAAATCCTC Reverse-AACCATCCATCCTCAGGAAC
Tcstv3	Real-time qPCR	Forward-AGAAAGGGCTGGAACTTGTGACCT Reverse-AAAGCTCTTTGAAGCCATGCCCAG
Cdc2	Real-time qPCR	Forward-GGACTACAAGAACACCTTTC Reverse-CAGGAAGAGAGCCAACGGTA
elF-1a	Real-time qPCR	Forward-TTTGGTCACTACTCAGGAGG Reverse-ATCAGAAGCAACTGGGACAC
Rif1	Real-time qPCR	Forward-GCAAGGATGTTGAGACTGAGC Reverse-TAGAGGCACTGGCAAGTATGTC
Rp/23	Real-time qPCR	Forward-CATGGTGATGGCCACAGTTA Reverse-GACCCCTGCGTTATCTTCAA
U2afbp-rs	Real-time qPCR	Forward-TAAGCTGCAACCTGGAACCT Reverse-CCTGCGTACCATCTTCCATT
Ube2a	Real-time qPCR	Forward-AATGGTTTGGAATGCGGTCA Reverse-TGTTTGCTGGACTATTGGGA
Mt1a	Real-time qPCR	Forward-CACCAGATCTCGGAATGGAC Reverse-AGCAGCTCTTCTTGCAGGAG
Wee1	Real-time qPCR	Forward-AGCCATCTACCGAAAGCAGA Reverse-ATCTGTGAAGAGTGCCCGTT
Lin28a	Real-time qPCR	Forward-GCGAAGATCCAAAGGAGACA

		Reverse-TGTGGATCTCTTCCTCTTCC
Stella	Real-time qPCR	
		Reverse-CACTGTCCCGTTCAAACTCA

