Systemic deficiency of GHR in pigs leads to hepatic steatosis via negative regulation of AHR signaling

Qi Han¹, Huiling Chen¹, Likai Wang¹, Yang An², Xiaoxiang Hu¹, Yaofeng Zhao¹, Hao Zhang³, Ran Zhang¹ *

¹State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.

²MD Department of Plastic Surgery, Peking University Third Hospital, Beijing, 100191, China
³National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, 100193, China.

*Corresponding author:

Ran Zhang, State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China. Telephone: 86-10-62731327

E-mail address: zhangran0628@cau.edu.cn

Supplementary Figure 1: Phenotype of GHR KO pigs. (A-B) Body length of male and female *GHR* KO pigs and their WT littermates. (C-D) Body weight and length of heterozygous GHR mutant and WT pigs. (E-F) Protein levels in GHR KO pigs. n =3 pigs per group. The data are presented as the mean \pm SD values. *, P < 0.05; **, P < 0.01; ***, P < 0.001.

Supplementary Figure 2. GHR deficiency disrupted glucose/lipid homeostasis in pigs. (A) Fasting blood glucose levels in GHR KO pigs and their WT littermates. (B-D) Fasting insulin levels and HOMA-IS and HOMA-IR indexes for WT and GHR KO pigs. (E-F) GTT results for WT and GHR KO pigs and the corresponding areas under the curve (AUCs) for the GTTs. (G-H) Protein levels of p-AKT and AKT in pigs by Western blotting, and the content was quantified by ImageJ. n = 3 pigs per group. The data are presented as the mean \pm SD values. *, P < 0.05; **, P < 0.01; ***, P < 0.001.

Supplementary Figure 3: (A) mRNA levels of fatty acid uptake and synthesis-related genes and inflammation-related genes in GHR KO pigs. (C) mRNA levels of fatty acid oxidation-, uptake- and synthesis-related genes in siGHR human hepatocytes. (D) mRNA levels of fatty acid oxidation-, uptake- and synthesis-related genes in siGhr mouse hepatocytes. Scale bar: 100 μ m. n =3 pigs per group. The data are presented as the mean \pm SD values. *, P < 0.05; **, P < 0.01; ***, P < 0.001.

Supplementary Figure 4: Representative image of Oil red O staining. Scale bar: 100

μm. Representative image of H&E staining. Scale bar: 200 μm.

Supplementary Figure 5: *Ghr* depletion did not cause intracellular lipid accumulation in cultured mouse hepatocytes. (A-D) Hepatocytes were treated with NC or *Ghr* siRNA (si*Ghr*). (A) GHR mRNA expression levels in mouse hepatocytes. (B) TG levels in mouse hepatocytes. (D) Nile red staining of mouse hepatocytes with NC or si*Ghr*. (E)The neutral lipid content was quantified with ImageJ and normalized to the number of nuclei. Scale bar: 100 μ m. n = 3 per group. The data are presented as the mean ± SD values. *, P < 0.05; **, P < 0.01; ***, P < 0.001.

Supplementary Figure 6: Transcriptome analysis of hepatic gene expression profiles in GHR KO pigs. (A) Genome-wide changes in mRNA expression are shown in a volcano plot. (B) Hierarchical cluster analysis of the DEGs. Samples are displayed in columns and genes in rows. Gene expression levels are represented as colours, with brighter red for higher values and brighter green for lower values. (C) Transcription factors identified based on the DEGs.

С

Supplementary Figure 7: AHR did not bind to GHR. (A) Pig livers were lysed and immunoprecipitation was carried out with AHR antibodies. The immunocomplexes were subjected to Western blot analysis. (B) Human hepatocytes were lysed and immunoprecipitation was carried out with AHR antibodies. The immunocomplexes were subjected to Western blot analysis.

Supplementary Table S1

The main primers of q-PCR

Gene		Sequences (Reverse)
GHR	GGATAAAGAGTATGAAGTGCGTGTG	GATAATTAAGAACCATGGAAACCGG
ACOX1	ACCACGGTGAAGAAGATAAGG	TGGCTCAGCAAGGTAGGAA
ACSL1	TCCTTGACAGTGATGAGCCCTTGG	TTCTGAGCGAAGATGCCGACGAA
CPT2	GGCTGCCTATTCCCAAACTTGAAGA	ATTCTGCTTGTCCTGAGCAACCAG
CPT1A	GGATGACGGCTCTGGCACAAGATT	GTCTGTAAAGCAGGATGGCGTGGAT
ACADM	AGGAGCCATTGATGTGTGC	CTGCTTTGGTCTTTATACCAGCTA
ACADS	GGAGGCTCAGGTGAAGAAG	GTGTAGGCCAGGTAATCCAG
ACADL	TGTCTCCAGCTGCATGAAACGA	AGCTGCACACAGTCATAAGCCA
ECH1	ACTGTCGTGCGGTGGTGATCTCT	CGATGACGCTGAAGGTCTCCTGGTA
HADH	TAGCCAATGCCACCACCAGACAG	CACCTCGTTCGTACAGCCTGACT
ACAA1	GCCTCCTTCCCTCCTGTTTCAGAA	TTCACTCGCCTCAGCATCCATCC
CYP7A1	TGGTGCCAATCCTCTTGAGTTCCT	GTCAATGCTTCTGTGCCCAAATGC
CYP27A1	GGCGATACCTGGATGGCTGGAATAC	GTCAGCGTGTTGGATGTCGTGTCT
EHHADH	TGGGTGCCTTGCTCAGGAGACTT	GCCGAGAATGCCAACAGAGGAGATG
CYP4A24	ATCCGCCAGTACCAGGAGTTAGCA	CCACAGCCACCTTCATCTCGTTCAT
hAHR	ATGTCGTCTAAGGTGTCTGCTGGAT	TGGATGGTGGCTGAAGTGGAGTAG
pAHR	GGACAGAGAATTGATGAAGCGAGTG	TGGATGGTGGCTGAAGTGGAGTA
mGHR	CTGATTTTACCCCCAGTCCC	ATGGTGTTCACCTCCTCCAAC
mAHR	GCAGAATCCCACATCCGCAT	AGGGCTGGAGATCTCGTACAAC