Supplementary material

Table S1. Details of the NP, AK-RSA and URSA patients (** P < 0.01, *** P

Parameters	NP	AK-RSA	URSA		P Value	
Maternal age	31.04 ± 0.8220,	32.19 ± 0.5494,	30.35 ± 0.9812,	NP vs URSA	AK-RSA vs URSA	NP vs AK-RSA
(y)	n=24	n=16	n=17	P =0.05933	P=0.1189	P =0.3063
Gestation	6.58 ± 0.2030,	6.73 ± 0.4179,	6.60 ± 0.3748,	NP vs URSA	AK-RSA vs URSA	NP vs AK-RSA
age (weeks)	n=24	n=16	n=17	<i>P</i> =0.9615	P =0.8104	<i>P</i> =0.7152
Number of	$0.0 \pm 0.0,$	1.44 ± 0.1281,	2.65 ± 0.2090,	NP vs URSA	AK-RSA vs URSA	NP vs AK-RSA
miscarriage	n=24	n=16	n=17	<i>P</i> < 0.0001	P < 0.0001	<i>P</i> < 0.0001
Number of	1.33 ± 0.0982,	0.06 ± 0.0625,	0.35 ± 0.2090,	NP vs URSA	AK-RSA vs URSA	NP vs AK-RSA
live births	n=24	n=16	n=17	<i>P</i> < 0.0001	P =0.2043	<i>P</i> < 0.0001
Number of	3.04 ± 0.2039,	1.62 ± 0.1797,	3.056 ± 0.2775,	NP vs URSA	AK-RSA vs URSA	NP vs AK-RSA
pregnancies	n=24	n=16	n=17	P =0.9596	P < 0.0001	<i>P</i> < 0.0001

< 0.001, **** *P* < 0.0001, NS, not significant).

Figure S1. The secretion of IFN- γ and VEGF α by dNK cells from URSA donors decreased and was positively correlated with the levels of HLA-E in T-EVs.

A. B. dNK cells were purified from decidual tissues from NP, AK-RSA or URSA patients and seeded into 96-well plates at 1×10^5 cells/well in complete medium containing 50 ng/ml IL-15 for 48 h. Intracellular expression of IFN- γ and VEGF α in CD3⁻CD56⁺ dNK cells obtained from NP, AK-RSA or RSA patients was detected by FCM. **C.** The expression of NKG2C in CD3⁻CD56⁺ dNK cells obtained from NP, AK-RSA or RSA patients was detected by FCM and statistically analyzed. **D.** Intracellular expression of IFN- γ and VEGF α in CD3⁻CD56⁺ dNK cells obtained from NP, AK-RSA or RSA patients was statistically analyzed. **E.** Supernatants of the dNK cells in **B.** were evaluated by ELISA, and the results were statistically analyzed. **F.** The correlations between the HLA-E level in T-EVs and intracellular IFN- γ and VEGF α expression in dNK cells were analyzed by Spearman correlation analysis using GraphPad Prism 6 (n=11). P values were generated by one-way analysis of variance (ANOVA) followed by the Newman-Keuls multiple comparison test using GraphPad Prism 6 (n=11 in NP group; n=11 in AK-RSA patient group; n=8 in URSA patient group, **P* < 0.05, ** *P* < 0.01, **** *P* < 0.001, **** *P* < 0.0001, NS, not significant).

Figure S2. Exosomes from JEG-3 cells promote the secretion of IFN-y

and VEGF α by dNK cells via HLA-E in vitro.

A. Western blot analysis of HLA-E, Alix, GRP94, TSG101 and CD9 in exosomes and cell lysates derived from negative control siRNA-treated JEG-3 cells (siNC-JEG-3) and HLA-E-specific siRNA-treated JEG-3 cells (siHLA-E-JEG-3). **B.** The intracellular expression of IFN-γ and VEGFα in dNK cells from URSA patients was detected by FCM and **C.** statistically analyzed. P values were generated by one-way analysis of variance (ANOVA) followed by the Newman-Keuls multiple comparison test using GraphPad Prism 6 (n=7, **P* < 0.05; ***P* <0.01; *** *P* < 0.001; **** *P* < 0.0001; NS, not significant).

Figure S3. The secretion of IFN- γ and VEGF α by dNK cells from NP donors was dependent on cellular metabolism.

A. Intracellular expression of IFN-γ and VEGFα in dNK cells from NP donors treated with or without the glycolytic inhibitor 2-DG (1 mM) or ATP synthase inhibitor oligomycin (20 µM) was detected by FCM and statistically analyzed in **B. C.** Supernatants of the dNK cells in **a.** were detected by ELISA, and the results were statistically analyzed. **D.** Intracellular staining for pS6, IFN-γ and VEGFα in dNK cells treated with 10 nM mTORC1 inhibitor (rapamycin) was evaluated by FCM and statistically analyzed in **E. F.** Supernatants of the dNK cells in **D** were detected by ELISA, and the results were statistically analyzed in **E. F.** Supernatants of the dNK cells in **D** were detected by ELISA, and the results were statistically analyzed. The data are representative of three independent experiments or are shown as the mean±s.e.m. pooled from three independent experiments. P values were generated by one-way analysis of variance (ANOVA) followed by the Newman-Keuls multiple comparison test using GraphPad Prism 6 (n=14, **P* < 0.005; ** *P* < 0.01; *** *P* < 0.001; **** *P* < 0.0001; NS, not significant).