SUPPLEMENTARY MATERIAL

The cross-talk between PARylation and SUMOylation in C/EBPβ at K134 site participates in pathological cardiac hypertrophy

Luping Wang^{1,2,#}, Panxia Wang^{1,#}, Suowen Xu³, Zhuoming Li¹, Dayue Darrel Duan⁴, Jiantao Ye¹, Jingyan Li¹, Yanqing Ding¹, Wenqing Zhang², Jing Lu^{1,*}, Peiqing Liu^{1,5,6.*}

¹Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangdong, China;

²Laboratory of Hematopathology & Drug Discovery, School of Medicine, South China University of Technology, Guangdong, China;

³Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui, China;

⁴Center for Phenomics of Traditional Chinese Medicine/the Affiliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Sichuan, China;

⁵National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangdong, China; ⁶School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangdong, China.

* Correspondence: School of Pharmaceutical Sciences, Sun Yat-sen University (Higher Education Mega Center), 132# East Wai-huan Road, Guangzhou 510006, Guangdong, China. Tel.: +86 20 39943116; fax: +86 20 39943026.

E-mail addresses: Jing Lu (lujing0504@126.com); Peiqing Liu (liupq@mail.sysu.edu.cn) [#]These authors contributed equally: Luping Wang, Panxia Wang

Supplementary Figures and Figure Legends

Figure S1. qPCR and Western blot were conducted to confirm the silencing efficiency of siRNAs. (**A** and **B**) The silencing efficiency of three different siRNA against PARP1 (S1, S2 and S3) was tested. (**C** and **D**) The silencing efficiency of three different siRNA against C/EBP β (S1, S2 and S3) was tested. (**E**) The silencing efficiency of three different siRNA against sumO1 (si-1, si-2 and si-3) was tested. ***P* < 0.01 *vs.* the NC group, ****P* < 0.001 *vs.* the NC group. *n*=5.

Figure S2. PARP1 and C/EBPβ participate in cardiac hypertrophy. NRCMs were transfected with siPARP1 or incubated with 3-aminobenzamide (3AB) (20 μmol/L) followed by incubation with phenylephrine (PE) (100 μmol/L for 24 h). (**A**) the cell surface area was observed using rhodamine-phalloidin staining, and the mRNA levels of atrial natriuretic factor (ANF) and brain natriuretic polypeptide (BNP) (**B**) were determined by qRT-PCR. NRCMs were transfected with HA-C/EBPβ plasmid and the hypertrophic responses were determined by measuring cell surface area (**C**) and the protein levels of ANF and BNP (**D**). NRCMs were transfected with siC/EBPβ followed by incubation with PE (100 μmol/L for 24 h), the reversed hypertrophic responses were demonstrated by cell surface area (**E**) and the protein levels of ANF and BNP (**F**). *P < 0.05 vs. the Control group, **P < 0.01 vs. the Control group, #P < 0.05 vs. the PE treatment group. *n*=3.

Figure S3. A, NRCMs were transfected with SUMO1 siRNA, immunoprecipitated with anti-SUMO1 antibody and subsequently subjected to immunoblotting analysis. \times indicates C/EBP β -SUMO. **B**, Neonatal rat cardiomyocytes (NRCMs) were treated with PE (100 µmol/L for 24 h), the protein level of SUMO1 was determined by western blotting analysis. *n*=3.

Sequence ID: Ic	d Query_40385	Length: 1014	Number of Matches: 1
-----------------	---------------	--------------	----------------------

Rang	e 1: 1	to 1014 Gra	aphics			Next Match	Previous Match
Scor 2085	e bits(5	Expect (403) 0.0	Method Compositional matrix adjust	Identities t. 1013/1014(99	Pos %) 101	s itives 14/1014(100%)	Gaps 0/1014(0%)
Query	1	MAEATERLYRVE MAEATERLYRVE	YAKSGRASCKKCSESIPKDSLRMAIMVQSP YAKSGRASCKKCSESIPKDSLRMAIMVQSP	MFDGKVPHWYHFSCFWK MFDGKVPHWYHFSCFWK	/ 60 /		
Sbjet	1	MAEATERLYRVE	YAKSGRASCKKCSESIPKDSLRMAIMVQSP	MFDGKVPHWYHFSCFWK	/ 60		
Query	61	GHSIRQPDTEVD GHSIRQPDTEVD	GFSELRWDDQQKVKKTAEAGGVAGKGQHGG GFSELRWDDQQKVKKTAEAGGVAGKGQHGG	GGKAEKTLGDFAAEYAK GGKAEKTLGDFAAEYAK	5 120		
Sbjet	61	GASTKÖLDIFADO	GLZETVUDAÁKAKI VEVGAAGKAAKAÁKAA	GGRAENILGUP AREIAN	\$ 120		
Query	121	NRSTUKGUMEKI	EKGQMRLSKKMLDPEKPQLGMIDRWYHPTC EKGQMRLSKKMLDPEKPQLGMIDRWYHPTC	FVKNRDELGFRPETSAS(FVKNRDELGFRPETSAS(2 180 2		
Sbjet	121	NRSTCKGCMEKI	EKGQMRLSKKMLDPEKPQLGMIDRWYHPTC	FVKNRDELGFRPEYSAS	ų 180		
Query	181	LKGFSLLSAEDKI LKGFSLLSAEDKI LKGFSLLSAEDKI	EALKKQLPAVKSEGKRKCDEVDGIDEVAKK EALKKQLPAVKSEGKRKCDEVDGIDEVAKK FALKKQLPAVKSEGKRKCDEVDGIDEVAKK	KSKKGKDKESSKLEKALI KSKKGKDKESSKLEKALI KSKKGKDKESSKLEKALI	K 240 K		
0	241	AOMET DENTEDIS	I WACCTIMI VELL TENOCOURCESCATI D	PUADOWARCALI POVRO	2 200		
Query	241	AQNELVWNIKDE	LKKACSINDLKELLIFNQQQVFSGESAILD LKKACSINDLKELLIFNQQQVPSGESAILD	RVADGMAFGALLPCKECS	5 300		
Sbjet	241	AQUELYTNIKUE	LKKAUSINDLKELLLIPNQQQVPSGESALLD	KVADGMAPGALLPUKEU:	\$ 300		
Query	301	GQLVFKSDATIC: GQLVFKSDATIC:	IGDVTAWTKCMVKTQNPSRKEWVTPKEFRE IGDVTAWTKCMVKTQNPSRKEWVTPKEFRE	ISYLKKLKI KKQDRLFPI ISYLKKLKI KKQDRLFPI	250 2		
Sbjet	301	GQLVFKSDAYYC:	IGDVTAWTKCMVKTQNPSRKEWVTPKEFRE	ISYLKKLKIKKQDRLFPI	P 360		
Query	361	ESSAPAPPAPPV ESSAPAPPAPPV	SITSAPTAVNSSAPADKPLSNMKILTLGKL SITSAPTAVNSSAPADKPLSNMKILTLGKL	SQNKDEAKAMIEKLGGKI SQNKDEAKAMIEKLGGKI	L 420		
Sbjet	361	ESSAPAPPAPPV	SITSAPTAVNSSAPADKPLSNMKILTLGKL	SQNKDEAKAMIEKLGGKI	420		
Query	421	TGSANKASLCIST TGSANKASLCIST	TKKEVEKMSKKMEEVKAANVRVVCEDFLQD TKKEVEKMSKKMEEVKAANVRVVCEDFLQD	VSASAKSLQELLSAHSLS VSASAKSLQELLSAHSLS	5 480 S		
Sbjet	421	TGSANKASLCIS:	TKKEVEKMSKKMEEVKAANVRVVCEDFLQD	VSASAKSLQELLSAHSLS	\$ 480		
Query	481	SWGAEVKVEPGE	VVVPKGKSAAPSKKSKGAVKEEGVNKSEKR VVVPKGKSAAPSKKSKGAVKEEGVNKSEKR	MKLTLKGGAAVDPDSGLI MKUTI KGGAAVDPDSGLI	540		
Sbjet	481	SWGAEVKVEPGE	VVVPKGKSAAPSKKSKGAVKEEGVNKSEKR	MKLTLKGGAAVDPDSGL	540		
Query	541	HSAHVLEKGGKVI	FSATLGLVDIVKGTNSYYKLQLLESDKESR	YWIFRSWGRVGTVIGSN YWIFRSWGRVGTVIGSN	K 600		
Sbjet	541	HSAHVLEKGGKVI	FSATLGLVDIVKGTNSYYKLQLLESDKESR	YWIFRSWGRVGTVIGSN	K 600		
Query	601	LEQMPSKEDAVE	HFMKLYEEKTGNAWHSKNFTKYPKKFYPLE	IDYGQDEEAVKKLAVKP	G 660		
Sbjet	601	LEQMPSKEDAVE	HFMKLYEEKTGNAWHSKNFTKYPKKFYPLE	IDYGQDEEAVKKLAVKP	, , 660		
Query	661	TKSKLPKPVQEL	VGMIFDVESMKKALVEYEIDLQKMPLGKLS	RRQIQAAYSILSEVQQA	720		
Sbjet	661	TKSKLPKPVQEL	VGMIFDVESMKKALVETEIDLQKMFLGKLS	RRQIQAATSILSEVQQA	, 720 /		
Query	721	SQGSSESQILDL	SNRFYTLIPHDFGMKKPPLLNNTDSVQAKV	EMLDNLLDIEVAYSLLR	F 780		
Sbjet	721	SQGSSESQILDL	SNRFYTLIPHDFGMKKPPLLNNTDSVQAKV	EMLDNLLDIEVATSLLR	, , 780		
Query	781	GSDDSSKDPIDV	NYEKLKTDIKVVDRDSEEAEVIRKYVKNTH	ATTHNAYDLEVIDIFKI	840		
Sbjet	781	GSDDSSKDPIDVI GSDDSSKDPIDVI	NYEKLKTDIK V VDRDSEEAE VIRKY V KNTH NYEKLKTDIK V VDRDSEEAE VIRKY V KNTH	ATTHNAYDLEVIDIFKI ATTHNAYDLEVIDIFKI	s 8 840		
Query	841	REGESQRYKPFR	QLHNRRLLWHGSRTTNFAGILSQGLRIAPP	EAPVTGYMFGKGIYFAD	900		
Sbjet	841	REGESQRYKPFR	QLANKKLLWHGSRTINFAGILSQGLRIAPP QLANRRLLWHGSRTINFAGILSQGLRIAPP	EAPVIGYMFGKGIYFADI EAPVIGYMFGKGIYFADI	M 900		
Query	901	VSKSANYCHTSQ	GDPIGLILLGEVALGNMYELKHASHISKLP	KGKHSVKGLGKT APDPS	A 960		
Sbjet	901	VSKSANICHISQ	GDPIGLILLGEVALGNMYELKHASHISKLP	KGKHSVKGLGKTAPDPS	A 960		
Query	961	SITLDGVEVPLG	TGIPSGVNDTCLLYNEYIVYDIAQVNLKYL	LKLKFNFKTSLW 1014	1		
Sbjet	961	SITLDGVEVPLG SITLDGVEVPLG	TGIPSGVNDTCLLYN+YIVYDIAQVNLKYL TGIPSGVNDTCLLYNKYIVYDIAQVNLKYL	LKLKFNFKTSLW LKLKFNFKTSLW 1014	1		

Figure S4. The protein sequences of PARP1 and its mutant (E988K) were aligned using Basic Local Alignment Search Tool (BLAST). We produced a mutant form of PARP1, E988K, which lacks catalytic activity. Glutamic acid (E) in the 988 site of PARP1 was replaced by lysine residue (K), and its protein sequences were aligned to wild type PARP1. Sequence ID: Query_186913 Length: 297 Number of Matches: 1

Range 1: 1 to 297 Graphics					🔻 Next Match 🔺 Previous Mat		
Scor 580	e bits(1	Expect .496) 0.0	Method Compositional matrix adjust	Identities 296/297(99%)	Positives 296/297(99%)	Gaps 0/297(0%)	
Query	1	MHRLLAWDAACLP	PPPAAFRPMEVANFYYEPDCLAYGAKAARAA	APRAPAAEPAIGEHERA	60		
Sbjct	1	MHRLLAWDAACLP	PPPAAFRPMEVANFYYEPDCLAYGAKAARA	APRAPAAEPAIGEHERA	60		
Query	61	IDFSPYLEPLAPA	AADFAAPAPAHHDFLSDLFADDYGAKPSKKI	PSDYGYVSLGRAGAKAA	120		
Sbjct	61	IDFSPYLEPLAPA	AADFAAPAPAHHDFLSDLFADDIGAKPSKKI AADFAAPAPAHHDFLSDLFADDYGAKPSKKI	PSDYGYVSLGRAGAKAA	120		
Query	121	PPACFPPPPPAAL	KAEPGFEPADCKRADDAPAMAAGFPFALRA	YLGYQATPSGSSGSLST	180		
Sbjct	121	PPACFPPPPPAAL	AAEPGFEPADCKRADDAPAMAAGFPFALRA	YLGYQATPSGSSGSLST	180		
Query	181	SSSSSPPGTPSPA	DAKAAPAACFAGPPAAPAKAKAKKAVDKLSI	DEYKMRRERNNIAVRKS	240		
Sbjct	181	SSSSSPPGTPSPA SSSSSPPGTPSPA	DAKAAPAACFAGPPAAPAKAKAKKAVDKLSI DAKAAPAACFAGPPAAPAKAKAKKAVDKLSI	DEYKMRRERNNIAVRKS DEYKMRRERNNIAVRKS	240		
Query	241	RDKAKMRNLETQH	KVLELTAENERLQKKVEQLSRELSTLRNLFI	QLPEPLLASAGHC 29	97		
Sbjct	241	RDKAKMRNLEIQH	KVLELIAENERLQKKVEQLSRELSILRNLFI KVLELTAENERLQKKVEQLSRELSTLRNLFI	QLPEPLLASAGHC 29	97		

Figure S5. The protein sequences of C/EBPβ and its mutant (K134A) were aligned using Basic Local Alignment Search Tool (BLAST). We produced a mutant form of C/EBPβ, Lysine acid (K) at the 134 site of C/EBPβ was replaced by Arginine residue (A), and its protein sequences were aligned to wild type C/EBPβ.

Sequence ID: Query_223603 Length: 292 Number of Matches: 1

Range 1: 1 to 292 Graphics					🔻 Next Match 🔺 Previous Match		
Sco 568	re bits(1	Expect .465) 0.0	Method Compositional matrix adjust.	Identities 292/297(98%)	Positives 292/297(98%)	Gaps 5/297(1%)	
Query	1	MHRLLAWDAACLF MHRLLAWDAACLF	PPPPAAFRPMEVANFYYEPDCLAYGAKAARAA PPPPAAFRPMEVANFYYEPDCLAYGAKAARAA	PRAPAAEPAIGEHERA PRAPAAEPAIGEHERA	60		
Sbjct	1	MHRLLAWDAACLF	PPPPAAFRPMEVANFYYEPDCLAYGAKAARAA	PRAPAAEPAIGEHERA	60		
Query	61	IDFSPYLEPLAP	AAADFAAPAPAHHDFLSDLFADDYGAKPSKKP	SDYGYVSLGRAGAKAA SDYGYVSLGRAGAKAA	120		
Sbjct	61	IDFSPYLEPLAPA	AAADFAAPAPAHHDFLSDLFADDYGAKPSKKP	SDYGYVSLGRAGAKAA	120		
Query	121	PPACFPPPPPAAI PPACFPPPPPAA	.KAEPGFEPADCKRADDAPAMAAGFPFALRAY GFFPADCKRADDAPAMAAGFPFALRAY	LGYQATPSGSSGSLST LGYQATPSGSSGSLST	180		
Sbjct	121	PPACFPPPPPAA-	GFEPADCKRADDAPAMAAGFPFALRAY	LGYQATPSGSSGSLST	175		
Query	181	SSSSSPPGTPSP/	ADAKAAPAACFAGPPAAPAKAKAKKAVDKLSD	EYKMRRERNNIAVRKS	240		
Sbjct	176	SSSSSPPGTPSPA	ADAKAAPAACFAGPPAAPAKAKAKKAVDKLSD	EYKMRRERNNIAVRKS	235		
Query	241	RDKAKMRNLETQF RDKAKMRNLETQF	HKVLELTAENERLQKKVEQLSRELSTLRNLFK HKVLELTAENERLQKKVEQLSRELSTLRNLFK	QLPEPLLASAGHC 29 QLPEPLLASAGHC	97		
Sbjct	236	RDKAKMRNLETQH	HKVLELTAENERLQKKVEQLSRELSTLRNLFK	QLPEPLLASAGHC 29	92		

Figure S6. The protein sequences of C/EBP β and its truncated mutant (Δ SUMO) were aligned using Basic Local Alignment Search Tool (BLAST). The conserved motif (LKAEP) was truncated, which lacks the sites for poly(ADP-ribosyl)ation, and its protein sequences were aligned to wild type C/EBP β .

Supplementary Tables

Table S1. Rat-specific primer sequences for quantitative reverse transcription

Target gene	Sequences
ANF	Forward: 5'-GGAAGTCAACCCGTCTCA-3'
	Reverse: 5'-AGCCCTCAGTTTGCTTTT-3'
BNP	Forward: 5'-TTTGGGCAGAAGATAGACCG-3'
	Reverse: 5'-AGAAGAGCCGCAGGCAGAG-3'
C/EBPβ	Forward:5'-AAGATGCGCAACCTGGAGAC-3'
	Reverse:5'-CCTTCTTCTGCAGCCGCTC-3'
SUMO1	Forward:5'-TCCAAAAGTGGCTTCACTGGA -3'
	Reverse:5'-AGCAGTGTCTGTTGCGTACA-3'
β-actin	Forward: 5'-TCGTGCGTGACATTAAAGAG-3'
	Reverse: 5'-ATTGCCGATAGTGATGACCT-3'

polymerase chain reaction (qRT-PCR)

Table S2. Sequences of siRNAs for C/EBPβ, PARP1 and SUMO1

siRNA	Sequences
C/EBPβ-rat-01	Sense: 5'-ACCUCUUCGCCGACGACUATT-3'
	Antisense:5'-UAGUCGUCGGCGAAGAGGUTT-3'
C/EBPβ-rat-02	Sense:5'-AGCUGAGCGACGAGUACAATT-3'
	Antisense: 5'-UUGUACUCGUCGCUCAGCUTT-3'
C/EBPβ-rat-03	Sense:5'-CCAUGGAAGUGGCCAACUUTT-3'
	Antisense:5'-AAGUUGGCCACUUCCAUGGTT-3'
PARP1-rat-01	Sense: 5'-GGGACUAACUCCUAUUACATT-3'
	Antisense:5'-UGUAAUAGGAGUUAGUCCCTT-3'
PARP1-rat-02	Sense: 5'-CCAUGUUCGAUGGAAAAGUTT -3'
	Antisense:5'-ACUUUUCCAUCGAACAUGGTT -3'
PARP1-rat-03	Sense: 5'-CCUACCUCAAGAAAUUAAATT -3'
	Antisense:5'-UUUAAUUUCUUGAGGUAGGTT-3'

SUMO1-rat-01	Sense: 5'-GCAGUGAGAUCCAUUUCAATT-3'
	Antisense:5'-UUGAAAUGGAUCUCACUGCTT-3'
SUMO1-rat-02	Sense: 5'-GGAAGAAGACGUGAUUGAATT-3'
	Antisense:5'-UUCAAUCACGUCUUCUUCCTT-3'
SUMO1-rat-03	Sense: 5'- GACAGGGAGUUCCAAUGAATT-3'
	Antisense:5'-UUCAUUGGAACUCCCUGUCTT-3'
NC	Sense:5'- UUCUCCGAACGUGUCACGUTT-3'
	Antisense:5'- ACGUGACACGUUCGGAGAATT-3'

 Table S3. Echocardiographic parameters of rats submitted to intramyocardial injection of adenovirus encoding PARP1 and ALA intraperitoneal injection

Group	Ad-GFP	Ad-PARP1	Ad-PARP1+ALA
LVAWd (mm)	1.62 ± 0.04	2.32±0.09*	2.08±0.07
LVAWs(mm)	2.05±0.19	3.12±0.12*	2.89±0.04
LVIDd(mm)	7.62±0.29	7.36±0.47*	$7.78{\pm}0.08^{\#}$
LVIDs(mm)	4.90±0.13	4.32±0.13*	4.55±0.11
LVPWd(mm)	2.16±0.08	2.32±0.16*	2.21±0.04 [#]
LVPWs(mm)	3.08±0.09	3.49±0.26*	$3.28{\pm}0.02^{\#}$
EF%	62.38±4.9	70.32±2.91*	64.92±2.25 [#]
FS%	34.95±2.8	40.59±1.65*	38.46±1.02 [#]
SV(µL)	219.25±12.8	274.36±14.2*	252.27±13.2 [#]
LVEDV(µL)	358.05±18.3	390.25±17.8*	382.36±16.2
LVSV(µL)	165.35±10.8	175.26±9.6	168.26±10.3

Data were presented as mean \pm SD. **P*<0.05 vs. Ad-GFP group, #P < 0.05 vs. Ad-PARP1 group, *n*=8.

Group	Sham	AAC	AAC+3AB
IVS-d (mm)	1.64±0.06	2.25±0.06*	1.82±0.04 [#]
IVS-s (mm)	2.26±0.10	3.16±0.08*	$2.69{\pm}0.07^{\#}$
LVID-d (mm)	8.01±0.09	7.32±0.07*	$7.67{\pm}0.09^{\#}$
LVID-s (mm)	5.34±0.21	4.21±0.14*	4.97±0.11 [#]
LVPW-d (mm)	1.82 ± 0.08	2.43±0.09*	$2.09{\pm}0.04^{\#}$
LVPW-s (mm)	2.64±0.06	3.34±0.09*	$2.98{\pm}0.04^{\#}$
EF%	61.80±1.60	71.63±1.84*	64.92±2.29 [#]
FS%	36.00±1.50	45.48±1.10*	40.46±1.04 [#]
SV(µL)	221.25±11.6	278.36±14.1*	248.22±11.2 [#]
LVSV(µL)	348.05±15.7	387.24±18.2*	378.36±14.3
LVEDV(µL)	159.35±11.4	165.26±9.6	164.26±10.3

Table S4. Echocardiographic parameters of rats submitted to abdominal aortic constriction(AAC) surgery and 3AB intraperitoneal injection

Data are presented as mean \pm SD. **P*<0.05 *vs*. the sham group, #*P* < 0.05 *vs*. the AAC group, n = 8.