Supplemental materials

Full title. CXCR4-dependent macrophage-to-fibroblast signaling contributes to cardiac diastolic dysfunction in heart failure with preserved ejection fraction.

Ning Zhang^{1#}, Qunchao Ma^{1#}, Yayu You¹, Xiangyang Xia¹, Cuiping Xie¹, Yuxue Huang¹, Zhuo Wang¹, Feiming Ye¹, Zhaosheng Yu², Xiaojie Xie^{1*}

NZ and QCM contributed equally to this article.

 Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, Second Affiliated Hospital, Zhejiang University College of Medicine, 88 Jiefang Rd, Hangzhou, Zhejiang Province, 310009, PR China

2. State Key Laboratory of Fluid Power and Mechatronic Systems, Department of Mechanics, Zhejiang University, Hangzhou 310027, China

Running title. Macrophagic CXCR4 and HFpEF

*Corresponding author.

Xiaojie Xie, Ph.D., Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, and Cardiovascular Key Laboratory of Zhejiang Province. 88 Jiefang Rd, Hangzhou 310009, P.R. China.

Tel.13705817626

E-mail address. xiexj@zju.edu.cn

1 Supplemental figures and figure legends

2

3 Figure S1. SAUNA induced HFpEF.

4 (A) Representative left ventricular M-mode echocardiographic, pulsed-wave Doppler and tissue Doppler 5 tracings, measurement of FS%, E/A, and E/E'. (B) Graphic representation and quantification of LVSP and 6 LVEDP, +dp/dt, and -dp/dt. (C) Recording of running times during exercise exhaustion test. (D) QPCR 7 analysis of the mRNA levels of ANP, and BNP in the heart. (E) Representative heart size and HW/BW. (F) 8 Masson's trichrome staining of heart tissues and quantification of fibrotic area. scale bars=50 μ m. Sham, n = 9 10; SAUNA, n = 14. All data were analyzed using unpaired two-tailed student's t-test. *, p<0.05.

2 Figure S2. Gating strategy for immune cells in heart post-SAUNA

3 Gating strategy of CD45+ CD11b+ leukocytes and CD45+CD11b+ F4/80+ macrophages in the heart of sham

4 and SAUNA group.

- 5
- 6
- 7

CXCR4 expression peritoneal macrophages

2 Figure S4. CXCR4 was knockout in peritoneal macrophages of MKO mice.

3 Flow cytometry analysis of CXCR4 expression in peritoneal macrophage of WT and MKO mice.

4

1

2 Figure S5. Circulatory leukocytes did not differ at baseline among WT and MKO mice.

3 Number of white blood cells (WBC), lymphocytes, neutrophils, monocytes, eosinophils and basophils in

⁴ blood obtained from WT and MKO mice. *, p<0.05.

6 two-tailed student's t-test. *, p<0.05.

Figure S7. Baseline cardiac function showed no difference between WT and MKO mice after bone marrow transplantation. (A) Measurement of FS%, E/A, and E/E' in baseline level of WT^{WT} and WT^{MKO}. (B) Measurement of FS%, E/A, and E/E' in baseline level of MKO^{WT} and MKO^{MKO}. WT^{WT}, n=6; WT^{MKO}, n=6; MKO^{WT}, n=6; MKO^{MKO}, n=6. Data were analyzed using unpaired two-tailed student's t-test *, p<0.05.

2 Figure S8. Ligands for CXCR4 were detected in the SAUNA-induced heart.

(A) Elisa analysis of the CXCL12 expression in the heart of sham and SAUNA group. Sham, n = 4; SAUNA, n = 6. (B) Elisa analysis of the HMGB1 expression in the heart of sham and SAUNA group. Sham, n = 4; SAUNA, n = 6. (C) Elisa analysis of the MIF expression in the heart of sham and SAUNA group. Sham, n = 4; SAUNA, n = 6.

в

3 (A) GO enrichment analysis for biological process enriched in downregulated gene terms of $M\Phi^{WT}$ and

- 4 MΦ^{MKO} after HMGB1 treatment. Top 10 of enriched GO term are listed. (B) Circos diagram of the indicated
- 5 genes regulated in enriched biological processes in $M\Phi^{WT}$ and $M\Phi^{MKO}$ after HMGB1 treatment.

А

Figure S11. Deletion of CXCR4 downregulated ECM expression in macrophages

The mRNA levels of genes coding extracellular matrix proteins (collagen, fibronectin, proteoglycans, integrins, and matrix proteinases and inhibitors) in primary CFs co-cultured with $M\Phi^{WT}$ and $M\Phi^{MKO}$ -CM with or without HMGB1 treatment. All data were analyzed using two-way ANOVA with Bonferroni's multiple comparisons test. *, p<0.05.

1

2

3

4 (A)Immunofluorescence staining of anti-Troponin T (red) and anti- α SMA antibody (green) (DAPI, blue) in 5 the heart of SAUNA induced WT and MKO mice. Scale bars=50 µm. (B)The mRNA levels of genes coding 6 extracellular matrix proteins (collagen, fibronectin, proteoglycans, integrins, and matrix proteinases and 7 inhibitors) in the heart of WT and MKO mice after sham or SAUNA operation. All data were analyzed using 8 two-way ANOVA with Bonferroni's multiple comparisons test. *, p<0.05.

3 Figure S13. CXCL3 localized predominately with macrophages in SAUNA-exposed heart

4 Immunofluorescence staining of anti-CXCL3 (red) and anti-F4/80 antibody (green) (DAPI, blue) in SAUNA-

5 exposed heart. Scale bars=50 μ m.

6

1

3 (A) Elisa analysis of the CXCL3 expression and mRNA levels of CXCL3 in the heart of WT and MKO 4 mice after sham or SAUNA operation. (B) Elisa analysis of the CXCL3 expression and mRNA levels of 5 CXCL3 in SAUNA-induced heart of WT and MKO mice after bone marrow transplantation. (C) 6 Immunofluorescence staining of anti-CXCL3 (red) and anti- α SMA antibody (green) (DAPI, blue) in the heart 7 of SAUNA induced WT and MKO mice. Scale bars=50 µm. WT^{sham}, n=6; MKO^{sham}, n=6; WT^{SAUNA}, n=6; 8 and MKO^{SAUNA}, n=6. Data were analyzed using unpaired two-tailed student's t-test (A and B) and two-way 9 ANOVA with Bonferroni's multiple comparisons test (C). *, p<0.05.

Figure S15. CXCR4 blockade macrophages suppressed CXCR2 in fibroblasts of SAUNA-induced
heart.

4 (A) The mRNA level of the CXCR2 in the heart of WT and MKO mice after sham or SAUNA operation. (B) 5 The mRNA level of the CXCR2 in SAUNA-induced heart of WT and MKO mice after bone marrow 6 transplantation. (C) Immunofluorescence staining of anti-CXCR2 (red) and anti- α SMA antibody (green) 7 (DAPI, blue) in the heart of SAUNA induced WT and MKO mice. Scale bars=50 µm. WT^{sham}, n=6; MKO^{sham}, 8 n=6; WT^{SAUNA}, n=6; and MKO^{SAUNA}, n=6. Data were analyzed using unpaired two-tailed student's t-test (A 9 and B) and two-way ANOVA with Bonferroni's multiple comparisons test (C). *, p<0.05.

Gene name	Primer sequence
F4/80	Forward: GTGGAGGCAGTGATGCTCTT
	Reverse: TGGAAGCCCATAGCCAAAGG
CXCR4	Forward: TGCAGCAGGTAGCAGTGAAA
	Reverse: TGTATATACTCACACTGATCGGTTC
CXCL12	Forward: TGCATCAGTGACGGTAAACCA
	Reverse: TTCTTCAGCCGTGCAACAATC
18s	Forward: CCCAGTAAGTGCGGGTCATAA
	Reverse: CCGAGGGCCTCACTAAACC
IL-1β	Forward: AGGCTCATCTGGGATCCTCT
	Reverse: AGGCTCATCTGGGATCCTCT
IL-6	Forward: CCACTTCACAAGTCGGAGGCTTA
	Reverse: GCAAGTGCATCATCGTTGTTCATAC
ΤΝFα	Forward: ACAAGATGCTGGGACAGTGA
	Reverse: ACCTGACCACTCTCCCTTTG
CCL5	Forward: GCTGCTTTGCCTACCTCTCC
	Reverse: TCGAGTGACAAACACGACTGC
Col1a1	Forward: GCTCCTCTTAGGGGGCCACT
	Reverse: CCACGTCTCACCATTGGGG
Col3a1	Forward: CTGTAACATGGAAACTGGGGAAA
	Reverse: CCATAGCTGAACTGAAAACCACC
Col4a1	Forward: TCCGGGAGAGATTGGTTTCC
	Reverse: CTGGCCTATAAGCCCTGGT
Col5a1	Forward: CTTCGCCGCTACTCCTGTTC

1 Table S1. Name and sequence of primers sets for real-time RT-PCR

	Reverse: CCCTGAGGGCAAATTGTGAAAA
Col7a1	Forward: GCCCAGAGATAGAGTGACCTG
-	Reverse: CGCACTTCTCGAAAGTTGCTG
FN1	Forward: ATGTGGACCCCTCCTGATAGT
-	Reverse: GCCCAGTGATTTCAGCAAAGG
VCAN	Forward: TTTTACCCGAGTTACCAGACTCA
-	Reverse: GGAGTAGTTGTTACATCCGTTGC
cTGF	Forward: CGCTGTGATGACGGTGGTTT
-	Reverse: CCTGGCACCTGTATTCTCCTG
KAL1	Forward: CAGCTAATGAATGGCGTTCTAGG
-	Reverse: CTTAGGTTGATAACGAGGGCAG
TNC	Forward: ACGGCTACCACAGAAGCTG
-	Reverse: ATGGCTGTTGTTGCTATGGCA
SPARC	Forward: GTGGAAATGGGAGAATTTGAGGA
-	Reverse: CTCACACACCTTGCCATGTTT
ITGA1	Forward: CCTTCCCTCGGATGTGAGTCA
-	Reverse: AAGTTCTCCCCGTATGGTAAGA
ITGA4	Forward: GATGCTGTTGTTGTACTTCGGG
-	Reverse: ACCACTGAGGCATTAGAGAGC
ITGA5	Forward: CTTCTCCGTGGAGTTTTACCG
-	Reverse: GCTGTCAAATTGAATGGTGGTG
ITGB3	Forward: CCACACGAGGCGTGAACTC
-	Reverse: CTTCAGGTTACATCGGGGTGA
ITGB5	Forward: GCTGCTGTCTGCAAGGAGAA

	Reverse:	AAGCAAGGCAAGCGATGGA
TIMP1	Forward:	GCAACTCGGACCTGGTCATAA
	Reverse:	CGGCCCGTGATGAGAAACT
TIMP2	Forward:	TCAGAGCCAAAGCAGTGAGC
	Reverse:	GCCGTGTAGATAAACTCGATGTC
TIMP3	Forward:	CTTCTGCAACTCCGACATCGT
	Reverse:	GGGGCATCTTACTGAAGCCTC
ACTA2	Forward:	GTCCCAGACATCAGGGAGTAA
	Reverse:	TCGGATACTTCAGCGTCAGGA
POSTIN	Forward:	CCTGCCCTTATATGCTCTGCT
	Reverse:	AAACATGGTCAATAGGCATCACT
DDR	Forward:	GCTCTCCAATCCGGCCTAC
	Reverse:	CGGGCTCCATATAGTCCCCA
PDGFRA	Forward:	TCCATGCTAGACTCAGAAGTCA
	Reverse:	TCCCGGTGGACACAATTTTTC
TCF21	Forward:	CCCACTAAGAAAAGCCCGCTC
	Reverse:	CCGTTCTCGTACTTGTCGTTG
CXCL3	Forward:	CAGTGCCTGAACACCCTACC
	Reverse:	GGACTTGCCGCTCTTCAGTA
BNP	Forward:	GGTGCTGTCCCAGATGATT
	Reverse:	GCCATTTCCTCCGACTTT
ANP	Forward:	GCCATTTCCTCCGACTTT
	Reverse:	TCCAGGTGGTCTAGCAGGTT
ΡΡΑRγ	Forward:	GGAAGACCACTCGCATTCCTT

		Reverse: GTAATCAGCAACCATTGGGTCA
	PPARα	Forward: AGAGCCCCATCTGTCCTCTC
		Reverse: ACTGGTAGTCTGCAAAACCAAA
	ΡΡΑRβ	Forward: TCCATCGTCAACAAAGACGGG
		Reverse: ACTTGGGCTCAATGATGTCAC
	Lysm-Cre	oIMR3066: CCC AGA AAT GCC AGA TTA CG
		oIMR3067: CTT GGG CTG CCA GAA TTT CTC
		oIMR3068: TTA CAG TCG GCC AGG CTG AC
	CXCR4-lxop	10378: CCA CCC AGG ACA GTG TGA CTC TAA
		10379: GAT GGG ATT TCT GTA TGA GGA TTA GC
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
13		
14		
15		
16		

1 Table S2. RNA-seq result of the top 18 significant genes in $M\Phi^{WT}$ and $M\Phi^{MKO}$ under HMGB1

2 stimulation.

~	Gene_name	МКО	WT	log2Fold		
Gene_id				Change	padj	
ENSMUSG0000095478	Gm9824	180.5134	351.3764	-0.96047	0.002101	
ENSMUSG00000061983	Rps12	3255.999	4651.913	-0.51488	0.002747	
ENSMUSG0000029379	Cxcl3	2.424679	36.65793	-3.9104	0.032014	
ENSMUSG0000021298	Gpr132	232.3973	408.1813	-0.81156	0.0391	
ENSMUSG0000062169	Cnih4	1103.998	1406.751	-0.34956	0.127725	
ENSMUSG00000014444	Piezo1	8705.321	7426.549	0.229215	0.199229	
ENSMUSG0000021453	Gadd45g	2447.341	1923.054	0.347637	0.25559	
ENSMUSG00000050071	Bex1	1546.675	1080.197	0.517379	0.25559	
ENSMUSG00000041453	Rpl21	864.0283	1830.075	-1.08283	0.25559	
ENSMUSG0000040253	Gbp7	237.3416	414.9638	-0.80507	0.25559	
ENSMUSG0000004891	Nes	1078.15	797.9487	0.43364	0.25559	
ENSMUSG0000027523	Gnas	917.1409	686.7162	0.417587	0.25559	
ENSMUSG0000032915	Adgre4	123.6392	241.3621	-0.9637	0.25559	
ENSMUSG0000029066	Mrpl20	743.8891	948.4467	-0.35012	0.25559	
ENSMUSG00000041992	Rapgef5	174.4833	285.0491	-0.7075	0.25559	
ENSMUSG0000022048	Dpysl2	482.6345	681.1266	-0.49636	0.25559	
ENSMUSG0000031604	Msmo1	1726.224	2296.406	-0.41153	0.284661	
ENSMUSG0000023367	Tmem176a	485.2247	687.2435	-0.50149	0.284661	
ENSMUSG0000025934	Gsta3	46.67984	116.6869	-1.31995	0.284661	
ENSMUSG0000068396	Rpl34-ps1	286.3335	424.6136	-0.56772	0.284661	

	normal	HFpEF patients	P valve
	individuals	(n=23)	(*,
	(n=13)		p<0.05)
Age (year)	32.31±11.96	59.78±9.46	<0.0001*
Gender (male/female)	6: 7	15: 8	0.3101
Comorbidity			
Hypertension (n, %)	0 (0%)	23, 100%	<0.0001*
Diabetes (n, %)	0 (0%)	0 (0%)	
Coronary heart disease (n, %)	0 (0%)	0 (0%)	
Peripheral arterial disease (n, %)	0 (0%)	0 (0%)	
Doppler echocardiography			
LVID. d (mm)	4.40±0.32	4.81±0.64	0.0444*
LA (mm)	3.00±0.30	3.62±0.48	0.0002*
LVEF (%)	65.41±4.31	62.35±9.78	0.3057
E/A	1.60±0.35	0.76±0.15	<0.0001*
E/E'	7.01±1.82	12.32±3.73	<0.0001*
Pro-BNP (pg/ml)	29.86±12.68	1435.76±1650.47	0.0421*
Blood routine			
Neutrophil absolute value(10^9/L)	3.50±1.04	3.84±1.31	0.2911
Lymphocyte absolute value(10^9/L)	1.56±0.63	1.96±1.17	0.2129
Monocyte absolute value(10^9/L)	0.39±0.10	0.58±0.23	0.0093*

Table S3. Patient clinical baseline characteristics

Name Company Item	Name Company Item No
For western blot:	
GAPDH	1:3000, Cell Signaling Technology, Danvers, MA, USA, 5174
aSMA	1:1000, Cell Signaling Technology, Danvers, MA, USA, 48938
Fibronectin	1:1000, Abcam, Cambridge, MA, USA, ab2413
PPARγ	1:1000, Cell Signaling Technology, Danvers, MA, USA, 2435
CXCR2	1:1000, Abcam, Cambridge, MA, USA, ab65968
NF-кВ р65	1:1000, 8242, Cell Signaling Technology, Danvers, MA, USA
pNF-кВ p65	1:1000, 3033, Cell Signaling Technology, Danvers, MA, USA
MEK	1:1000, ET1602-3, Huabio, China
pMEK	1:1000, ET1612-40, Huabio, China
Erk	1:1000, RT1484, Huabio, China
pErk	1:1000, ET1603-22, Huabio, China
For immunofluorescence:	
F4/80	1:300, Abcam, Cambridge, MA, USA, 6640
aSMA	1:300, Cell Signaling Technology, Danvers, MA, USA, 48938
CXCL3	1:1000, Abcam, Cambridge, MA, USA, ab220431
CXCR4	1:1000, Abcam, Cambridge, MA, USA, ab181020
For flow cytometry	
CD45	1:1000, BD Biosciences, San Jose, CA, USA, 557659, 555482
CD11b	1:1000, BD Biosciences, San Jose, CA, USA, 553312, 557657
CD66B	1:1000, BioLegend, San Diego, CA, USA, 305118
F4/80	1:1000, BD Biosciences, San Jose, CA, USA,123108, 123114
Ly6G	1:1000, BD Biosciences, San Jose, CA, USA,560602
CXCR4	1:1000, BD Biosciences, San Jose, CA, USA,551510, 551966
CCR2	1:1000, BD Biosciences, San Jose, CA, USA, 150608
Others	

1 Table S4. The antibodies and cytokines used in the study

	Aldosterone	0.3ug/h, Sigma-Aldrich Co., St. Louis, Missouri, 706035
	Recombinant Mouse CXCL3	10ng/ml, MCE, Shanghai, China, HY-P7153
	Recombinant Mouse HMGB1	1ug/ml, Abcam, Cambridge, MA, USA, ab181949
	Recombinant Mouse M-CSF	10ng/ml, PEROTECH, New Jersey, USA, 315-02
	Anti-CXCL3 neutralizing antibody	0.5ug/ml, R&D, Minneapolis, MN, USA, AF5568
	GW9662	10nM, MCE, Shanghai, China, HY-16578
	GW1929	10nM, MCE, Shanghai, China, HY-15655
	SB225002	10nM, MCE, Shanghai, China, HY-16711
	PD98059	10nM, MCE, Shanghai, China, HY-12028
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		