SUPPLEMENTARY MATERIAL

Figure S1. Pharmacological treatment and silencing of BRD4 downregulates ATF4 and XBP1 UPR genes in tubular epithelial cells (TECs).

Figure S2. Hypoxia induces the expression of UPR genes.
Figure S3. Treatment with JQ1 blocks ATF4 and XBP1 expression under hypoxia/reoxygenation conditions.
Figure S4. BRD4 expression remains unchanged after UPR induction in HK-2 cells.
Figure S5. JQ1 inhibits the direct binding of BRD4 protein to UPR genes induced by Tg in tubular renal cells.

Figure S6. BRD4 is not involved in the gene transcription of ATF6 induced by hypoxia in HK-2 cells.

Figure S7. BRD4 expression remains stable in mice with IRI.
Figure S8. CRISPR interference induced specific and irreversible gene silencing of XBP-1 and ATF4 in HK-2 cells.

Figure S9. Treatment with JQ1 avoids the downmodulation of the adaptive ER stress pathways.

Figure S10. Pathways associated with restoring ER homeostasis were not modulated by JQ1 treatment.

Table S1. Primers sequences for RT-PCR and ChIP assay in human and mouse genes.
Table S2. Gene-targeted sequences and primers for CRISPR/Cas9 mediated knockout studies.

Table S3. Genes upregulated and downregulated in HK-2 cells after Tg induction, and Gene Ontology (GO) categories of upregulated genes.

Table S4.- Genes and GO categories from the "XBP1-dependent signature" and "ATF4/XBP1-dependent signature".

Table S5.- Genes and GO categories from the "JQ1-dependent signature", "JQ1dependent XBP1 signature" and "JQ1-dependent ATF4/XBP1 signature".

Figure S1. Pharmacological treatment and silencing of BRD4 downregulates ATF4 and XBP1 UPR genes in tubular epithelial cells (TECs). Renal TECs (HK-2 cell line) were treated with DMSO (Ctrl) or $\operatorname{Tg}(4 \mu \mathrm{M}, 24 \mathrm{~h})$ in the absence or presence of different doses of the JQ1 (+) or its enantiomer JQ1(-) (A), and I-BET 762 (B) inhibitors for 24 h . Gene expression was analyzed by RT-PCR analysis, with GAPDH used as a housekeeping gene. Data are summarized as the mean \pm SEM of at least three independent experiments. Two-tailed Student's paired t-tests were used; ${ }^{*} p<0.05$ vs. control; $\# p<0.05 \mathrm{vs}$. Tg+ JQ1(-)-treated cells. (C, D) HK-2 cells were transfected with a specific siRNA against BRD4 (siRNA BRD4, 25 and 40 nM) or control siRNA (siRNA Ctrl, 40 nM) for 48 h and followed by Tg treatment ($4 \mu \mathrm{M}, 24 \mathrm{~h}$). Transcriptional levels of BRD4, ATF4 and XBP1 were determined by RT-PCR (C), and protein levels (D) were assayed by western blot. Data are summarized as the mean \pm SEM of three independent experiments. Statistical analyses involved the two-tailed Student's paired t-test and the Wilcoxon test. *p<0.05 vs. Ctrl and \# vs. control siRNA Ctrl-treated cells.

Figure S2. Hypoxia induces the expression of UPR genes. HK-2 cells were exposed to normoxia (t0) or different hypoxia times, 1 (t1), 3 (t3), 6 (t6) and 12 (t12) hours. Transcriptional levels of, ATF4, XBP1 and ATF6 were determined by RT-PCR. Data are expressed as mean \pm SEM of three independent experiments. Two-tailed Student's paired t-test and Wilcoxon test analysis were used. *p < 0.05 vs t0 (normoxia).

Figure S3. Treatment with JQ1 blocks ATF4 and XBP1 expression under hypoxia/reoxygenation conditions. HK-2 cells were subjected to 12 h of hypoxia (t12) followed by various reoxygenation time points ($2 \mathrm{~h}, 4 \mathrm{~h}, 6 \mathrm{~h} H / \mathrm{R}$ time) in the absence or presence of JQ1(+) or its enantiomer JQ1(-). Gene expression was analyzed by RT-PCR analysis (A) and protein levels (B) were analyzed by western blot. Data are expressed as the mean \pm SEM of at least three independent experiments. GADPH and β-actin were used as housekeeping markers of RT-PCR and western blot, respectively. Statistical analyses involved use of the two-tailed Student's paired t-test and the Wilcoxon test. * $p<0.05$ vs. t0 (normoxia), \# vs. cells in hypoxia (t12) treated with JQ1(-) and \$ vs. cells under H / R times treated with JQ1 (-).

Figure S4. BRD4 expression remains unchanged after UPR induction in HK-2 cells. HK2 cells were cultured under different experimental conditions; (A) with DMSO (Ctrl) or $\operatorname{Tg}(4 \mu \mathrm{M}, 24 \mathrm{~h}),(\mathrm{B})$ exposed to normoxia (t0) or hypoxia (t 12) conditions and (C) exposed to normoxia (t0) or hypoxia (t12) conditions followed by different reoxygenation time, including 2 h , 4 h and 6 h (H / R time). Transcriptional levels of BRD4 were determined by RT-PCR (left panel) and data are expressed as mean \pm SEM of at least three independent experiments. Protein levels were assayed by western blot (middle and right panel). A representative image is showed in the middle panel are data from two or three independent experiments (marked as \#) are showed in the right panel. Data Gapdh and β-actin were used as loading controls. Two-tailed Student's paired t-test was used. * $p<0.05$ vs. Ctrl cells.

Figure S5. JQ1 inhibits the direct binding of BRD4 protein to UPR genes induced by $\mathbf{~ T g}$ in tubular renal cells. (A) HK-2 cells were cultured with $\operatorname{Tg}(4 \mu \mathrm{M}, 24 \mathrm{~h})$ in the presence of JQ1(+) or its enantiomer JQ1(-) ($500 \mathrm{nM}, 24 \mathrm{~h}$). ChIP assays were performed with specific antibodies against BRD4, RNA POL II, AcH3 and AcH4, and the region of interest of each gene was amplified by RT-PCR using specific primers (dashed arrows). The results are represented as the relative enrichment of each antibody versus IgG control. Data are expressed as the mean \pm SEM of three independent experiments; ${ }^{*} p<0.05$ vs Ctrl cells and \# vs cells treated with Tg+ JQ1(-). (B) HK-2 cells were treated with Tg (4 $\mu \mathrm{M}, 24 \mathrm{~h})$ and $\operatorname{DRB}(20-60 \mu \mathrm{M})$ was added during the last 6 h of culture. Gene expression was analyzed RT- PCR. Data are expressed as mean \pm SEM of three independent experiments. Two-tailed Student's paired t-test was used. ${ }^{*} p<0.05$ vs Ctrl; \# $p<0.05$ vs Tg-treated cells.

Figure S6. BRD4 is not involved in the gene transcription of ATF6 induced by hypoxia in HK-2 cells. HK-2 cells were treated with or without JQ1(+) or its enantiomer JQ1(-) ($500 \mathrm{nM}, 24 \mathrm{~h}$) before exposure to normoxia (t0) or hypoxia (t12) conditions and relative enrichment of BRD4 and Histone 3 (H3) were analyzed in five different regions (R1-R5) of the ATF6promoter by RT-PCR using specific primers (dashed arrows). The results are represented as the relative enrichment of each antibody versus $\lg G$ control. Data are
expressed as the mean \pm SEM of three independent experiments and two-tailed Student's paired t-test was used.

Figure S7. BRD4 expression remains stable in mice with IRI. Mice were subjected to renal bilateral ischaemic injury for 45 min and sacrificed at $3 \mathrm{~h}, 6 \mathrm{~h}, 12 \mathrm{~h}$ and 24 h . Sham mice were used as the control group. Expression levels of BRD4 were quantified by RTPCR ($n=6-7$ mice per group) and protein levels were assayed by western blot ($n=3-4$ mice per group). Data are represented as mean \pm SEM. Gapdh and β-actin were used as controls. Statistical analyses involved use of Mann-Whitney test. ${ }^{*} p<0.05$ vs Sham.

Figure S8. CRSPR interference induced specific and irreversible gene silencing of XBP1 and ATF4 in HK-2 cells. (A) Genomic DNA was extracted from HK-2 cells transfected with the empty vector (HK-2-WT), and HK-2 cells silenced for XBP1 (XBP1-KO) and ATF4 (ATF4-KO). Sanger sequencing was performed to show the deletion of 8 and 7 nucleotides (nt) in ATF4 (exon 2) and XBP1 (exon 4) genes, respectively. Transcriptional expression (B) and protein levels (C) of ATF4, XBP1 and ATF6 in control cells (HK-2-WT) and after silencing of XBP1 (XBP1-KO) and ATF4 (ATF4-KO) genes. Expression levels are summarized as the mean \pm SEM of three independent experiments. The two-tailed Student's paired t-test and the Wilcoson test was used. *p< 0.05 vs. control; \# $p<0.05$ vs. expression in HK-2-WT cells.

Figure S9. Treatment with JQ1 avoids the downmodulation of the adaptive ER stress pathways. Venn diagrams showing the comparisons between "XBP1 dependent signature" or "ATF4/ XBP1 dependent signature" and "JQ1 dependent signature" to select the genes regulated by XBP1 but not modified by JQ1, 195 genes; and the genes regulated by ATF4/XBP1 and unchanged after JQ1 treatment, 76 genes. GO analysis of ten most significant categories of genes decreased by JQ1 under UPR activation and functional interaction networks of genes unmodified by JQ1 and regulated by XBP1 or ATF4 /XBP1. Network centrality is indicated by the color scale and node size.

Figure S10. Pathways associated with restoring ER homeostasis were not modulated by JQ1 treatment. (A) HK-2 cells were treated with $\operatorname{Tg}(4 \mu \mathrm{M}, 24 \mathrm{~h})$ in the presence of

JQ1(+) or its enantiomer, JQ1(-). (B) Kidney samples obtained from the Sham, IRI and IRI+JQ1 mouse groups ($\mathrm{n}=5$ mice per group) at 3 (t 3) and 24 (t24) h post-reperfusion. Gapdh was used as a control housekeeping gene. In vitro data are summarized as the mean \pm SEM of at least three independent experiments. Statistical analyses involved use of the two-tailed Student's paired t-test and Mann-Whitney U test. * $p<0.05$ vs. control (DMSO) or Sham group.

Table S1. Primers sequences for RT-PCR and ChIP assay in human and mouse genes.

	Forward ($5^{\prime}-3^{\prime}$)	Reverse ($5^{\prime}-3^{\prime}$)
Human RT-PCR		
ATF4	CTTGATGTCCCCCTTCGACC	CTTGTCGCTGGAGAACCCAT
ATF6	GCTGCAATTGGAAGCAGCAA	ACCGAGGAGACGAGACTGAA
BRD4	CCCCTCGTGGTGGTGAAG	GCTCGCTGCGGATGATG
CX3CL1	CACCACGGTGTGACGAAATG	TCTCCAAGATGATTGCGCGT
DERL3	ССТСAGCCCCTTTCAACTCT	GAAGTTGGTGACGAGCCTCC
ERP57	GCTAGAACTCACGGACGACA	TCAGGGTTGGATATCCACTG
GAPDH	TGCCATGGGTGGAATCATATTGGA	TCGGAGTCAACGGATTTGGTCGT
GRP94	CTTCCAAGCCGAAGTTAACAGA	GCATTTGAAATCAGTTCTCTCAGGA
IL23A	GACCCACAAGGACTCAAGGAC	ATGGGGCTATCAGGGAGTAGAG
IRE1a	CGATGGACTGGTGGTAACTG	GTTGATGTGCACCACCTTTC
MANF	TATAAAGTTCTGCCGGGAAGC	GATTTTGGTGGCTGCATCATC
MST1	ATACCATGGCCAAGCGGAAT	TCAGCATAAGGGGGCTTTCC
NUPR1	CCCACTTCACCTCTGACTCC	GGTCACCAGTTTCCTCTCGT
OS9	GGACGCCACATCCAGCAATA	CCAGTCGAAGGCTGATTGGT
TLR3	AGATTACCAGCCGCCAACTT	GCTCATTGTGCTGGAGGTTC
TRIB3	GAGATACTCAGCTCACGGGC	ATCTTGCCGAAGAGCAGGAC
VNN1	GATATTGCCCAATGCCACCC	TATGCGCACCCTGATCTGC
XBP1s	GCTGAGTCCGCAGCAGGT	CTGGGTCCAAGTTGTCCAGAAT
Human assay		
GAPDH (VIC) Hs02758991_g1		
IL6 (FAM) Hs00174131_m1		
Human ChIP		
ATF4	GTTGGCATGAAGCCCTCTTGAATAA	AGAGTGCTGTAGCTGTGTGTTC
ATF6-R1	ACGTGGTCCTAGAAGCATACG	TCCATTTTAAATTTCAGCGGCCA
ATF6-R2	TTTCAGTTGGAGTTCGTGATGT	AAGTCCAAGCGAGTCTACCC
ATF6-R3	CTTACCTCGGTTACTGTCCCAG	ACGCGTGTATGAAAGAAAAACACTA
ATF6-R4	TTGTTCTGAGATAGCCACGC	AAAGCCCCTTTCTGAACATTATGG
ATF6-R5	TCCCCATAAAACAGCGGGAC	GCACGAGGGATTTGTACGAC
XBP1	TCTCGATATGTGATGGTGTGTCC	CCAACTGAAGTGAGCCTAACG
Mouse RT-PCR		
atf4	GCAGCAGCACCAGGCTCT	TTGTCCGTACAGCAACACTG
atf6	CTTCCTCCAGTTGCTCCATC	CAACTCCTCAGGAACGTGCT
brd4	TGCTCAGGAATGTATCCAGGAC	AGACGATGTCATCTCCAGGC
cx3cl1	TGCGACAAGATGACCTCACG	CATTGTCCACCCGCTTCTCA
derl3	GCAAGGCTGACTTCGTTTTC	GCCTGTCCCAGGAAAAACAG
erp57	GTGTGGACATTGCAAGAGGC	TTGGCAGTGCAATCCACCTT
gapdh	GAAGGTCGGTGTGAACGGA	GTTAGTGGGGTCTCGCTCCT
grp94	TGTGTCCTGCTGACCTTCGG	TTTACCCAGGTCCTCTTCCACT
il23a	TGCTGGATTGCAGAGCAGTAA	TTCATATGTCCCGCTGGTGC
ire1a	GTCCCAACACACGTGGAAGA	AGTTTCGTCAGGCCTTCGTT
manf	AAGTTTTGCCGTGAAGCAAGA	GATGATCTTGGTGGCAGCATC
mst1	TGACAGCCCTCACGTAGTCA	AACGTCTTGTTCCGTAGCCG
nupr1	CACCAACAGCCAACCCTTCC	CTCTCTTGGTCCGACCTTTCC
os9	ATGCCCCTTGTTTGCTGAAG	CCTTTGATCTCCGAGTCTTCCA
t/r3	TACAAAGTTGGGAACGGGGG	GGTTCAGTTGGGCGTTGTTC
trib3	TGCCAAGTGTCCAGTCCTAA	CAGCAGGTGACAAGTCTGAGG
vnn1	ATGGCATATACGGTGTGCGT	CAGTGAGAGTCGCTGGTGTT
xbp1s	GAGTCCGCAGCAGGTG	GTGTCAGAGTCCATGGGA
Mouse assay		
Gapdh (V	Mm99999915_g1	

I/6 (FAM) Mm00446190_m1		
Mouse ChIP		
atf4 xbp1 GAGATGGCAGGTGTGACAGT	CTATTGGCTCTGCACCTGGG	
	ACATGCTAGCCAAGGCTCTAGT	GCAAAACTAAATGTAGCAGGGTAGT

Table S2. Gene-targeted sequences and primers for CRISPR/Cas9 mediated knockout studies.

Gene	Targeted exon	Primer sequence (5'-3')
ATF4	2	Targeted sequence: TCTCTTAGATGATTACCTGGAGG Forward: CACCGTCTCTTAGATGATTACCTGG Reverse: AAACCCAGGTAATCATCTAAGAGAC
XBP1	4	Targeted sequence: CACCGGTCAATACCGCCAGAATCCA Forward: CACCGGTCAATACCGCCAGAATCCA Reverse: AAACTGGATTCTGGCGGTATTGACC

Table S3 (xls file). Genes upregulated and downregulated in HK-2 cells after Tg induction, and Gene Ontology (GO) categories of upregulated genes.

Table S4 (xls file). Genes and GO categories from the "XBP1-dependent signature" and "ATF4/XBP1-dependent signature".

Table S5 (xls file). Genes and GO categories from the "JQ1-dependent signature", "JQ1dependent XBP1 signature" and "JQ1-dependent ATF4/XBP1 signature".

Figure S1

A

B

Figure S2

Figure S3

Figure S4
A

B

C

Figure S5

Figure S6

Figure S7

Figure S8
A

C

Figure S9

Response to ER stress (p -value $=4.08 \times 10^{-17}$)
Ubiquitin-dependent ERAD pathway (p-value $=2.43 \times 10^{-14}$) Protein folding in ER (p-value $=3.13 \times 10^{-13}$)
ER unfolded protein response (p -value $=3.88 \times 10^{-9}$)
Protein folding (p -value $=3.92 \times 10^{-8}$)
Retrograde protein transport, $E R$ to cytosol (p-value $=5.55 \times 10^{-8}$) иепая
Response to unfolded protein (p-value $=5.08 \times 10^{-5}$)
Regulation of autophagy (p-value $=0.0022$)
Response to redox state

ER overload response

Amino acid transport (p-value $=0.0054$)
L-serine biosynthetic process $(p$-value $=0.018)$
L-lysine transmembrane transport(p-value $=0.016$)
Prostaglandin biosynthetic process $(p$-value $=0.049)$

Figure S10

A

\square Crl
$\square \mathrm{Tg}+\mathrm{JQ1}(-)$

■ Tg + JQ1(+)

B
O Sham - IRI - IRI +JQ1

