WTAP Mediated N6-methyladenosine RNA Modification of ELF3 Drives Cellular Senescence by Upregulating IRF8

Lei Zhou^{2,3}[†], Yun Zhong^{1,2}[†], Fan Wang^{1,2}, Yi Guo^{1,2}, Rui Mao^{1,2}, Hongfu Xie^{1,2}, Yiya Zhang^{1,2,4}*, Ji Li^{1,2,4}*

Address:

 Department of Dermatology, Xiangya Hospital, Central South University, Changsha, P.R. China
Hunan key laboratory of aging biology, Xiangya Hospital, Central South University, Changsha, P.R. China
Department of Dermatology, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China, 410008
These authors contributed equally to this work.
* Corresponding author.

Ji Li: liji_xy@csu.edu.cn, Tel: +86 731 84327472;

Yiya Zhang: yiya0108@csu.edu.cn

Keywords: WTAP; m6A; senescence; ELF3; IRF8

WTAP Expression Profile Across Skin Cell Types by scRNA-Seq Analysis. A. Diplot of single cell clustering; B. Featureplot of WTAP; C. Vlnplot of WTAP in each cell. FB, Fibroblasts; BC, Basal Cells; B, B Cells; T, T Cells; KC, Keratinocytes; UNs_KC, Undefined Keratinocytes; SMC, Smooth Muscle Cells; MC, Mast Cells; NK, Natural Killer Cells; NKT, Natural Killer T Cells; GC, Germinal Center cells.

Figure S2

Immunohistochemistry staining of WTAP in human skin of non-exposed (n=8), and exposed areas (n=6). Data are shown as mean \pm SEM. Epi, epidermis; Der, dermis. Scale bars, 50µm. ***P < 0.001.

WTAP expression and m6A modification was upregulated in premature senescent HDFs. (A) qPCR and (B) western blotting showed the expression of WTAP in hydrogen peroxide (H₂O₂), UVA, or HRAS oncogene induced HDFs. Overall m6A modification in hydrogen peroxide (H₂O₂), UVA, or HRAS oncogene induced HDFs by Dot Blot (C) and m6A colorimetric assay (D); Methylene blue staining was used as loading control. Data are shown as mean \pm SEM. *P < 0.05; **P < 0.01; ***P < 0.001; ns, not significant.

Ectopic expression of WTAP induced cellular senescence in young-passages HDFs. Young-passages HDFs (PD < 10) were infected with WTAP or negative control lentivirus. (A), The LV-WTAP upregulated the mRNA expression of WTAP. (B), The

proteins levels of WTAP, p-ATM, ATM, p53, p21, and p16 by western blotting. (C), Cell proliferation measured by CCK8. (D), Cell cycle analysis measured by flow cytometry. (E), Immunofluorescence staining of Ki67, Edu, and γ -H2A.X, SA- β -Gal staining in HDFs upon shRNA-mediated knockdown of WTAP. Scale bar, 50 µm. (F), The proteins levels of bcl-2 and bax by western blotting. (G), The mRNA expression levels of IL-1 β , IL-6, IL-8, CXCL10, MMP3 and TNF- α by RT-qPCR. Data are shown as mean \pm SEM. *P < 0.05; **P < 0.01; ***P < 0.001.

RNA-seq results revealed the DEGs (Differentially expressed genes) between HDFsshWTAP and HDFs-shNC. (A, B) The volcano map and heatmap of DEGs. High or low expression is indicated by red or green in the digram. (C), GO analysis indicated the biological processes (BP), cellular components (CC), and molecular functions (MF) of DEGs. (D), KEGG pathway of DEGs. (E), Differential transcription factor family distribution.

Figure S6

ELF3 and IRF8 expression were upregulated in the different cellular senescence models. (A) western blot assay and (B, D) qPCR assay revealed the ELF3 and IRF8 expression in young, middle-aged, and old HDFs of different individuals. (C, E) qPCR assay revealed the ELF3 and IRF8 expression in hydrogen peroxide (H₂O₂), UVA, or HRAS oncogene induced HDFs. Data are shown as mean \pm SEM. *P < 0.05; **P < 0.01; ***P < 0.001; ns, not significant.

The high confidence m6A sites of ELF3 were predicted in a motif-dependent m6A site predictor SRAMP (http://www.cuilab.cn/sramp).

Appendix Table 1.	Details of each	dataset.
-------------------	-----------------	----------

	Subject ID	Sex	Age at Biopsy
GSE138669	SC1nor	Male	63
	SC4nor	Male	54
	SC18nor	Female	66
	SC32nor	Female	23
	SC33nor	Female	62
	SC34nor	Male	24
	SC50nor	Male	64
	SC68nor	Female	48
	SC124nor	Male	54
	SC125nor	Male	61
GSE156326	skin1	Female	30
	skin2	Female	36
	skin3	Female	43
GSE162183	Ctrl1	Female	32
	Ctrl2	Male	23
	Ctrl3	Male	47
GSE130973	y1	na	25
	y2	na	27
	01	na	53
	02	na	70
	03	na	69
aging_2018	SC1control	male	63
	SC14control	male	54
	SC18control	female	66
	SC32control	female	23
	SC33control	female	62

Sample ID	Sample classification	Age/Gender	Lesion area
1	Young	19/F	Upper limbs
2	Young	22/M	Abdomen
3	Young	22/M	Upper limbs
4	Young	23/M	Upper limbs
5	Young	24/F	Back
6	Young	26/M	Back
7	Young	26/M	Back
8	Young	28/F	Back
9	Middle-aged	31/M	Back
10	Middle-aged	32/M	Upper limbs
11	Middle-aged	32/F	Back
12	Middle-aged	33/M	Upper limbs
13	Middle-aged	34/F	Upper limbs
14	Middle-aged	39/M	Back
15	Middle-aged	41/M	Abdomen
16	Middle-aged	42/F	Upper limbs
17	Middle-aged	48/M	Back
18	Middle-aged	50/M	Abdomen
19	Middle-aged	59/F	Upper limbs
20	Middle-aged	63/F	Chest
21	Old	71/M	Back
22	Old	75/M	Back
23	Old	76/M	Abdomen
24	Old	78/F	Chest
25	Old	78/F	Upper limbs
26	Old	81/M	Back

Appendix Table 2. Information on skin samples from individuals of different ages.

Gene	Forward primer	Reverse primer
symbol		
Primers for	·RT-qPCR:	
Human-	GGAGCGAGATCCCTCCAAAA	GGCTGTTGTCATACTTCTCAT
GAPDH	Т	GG
Human-	CTTCCCAAGAAGGTTCGATT	TCAGACTCTCTTAGGCCAGT
WTAP	GA	TAC
Human-	GGCCGATGACTTGGTACTGA	GCTTGCGTCGTACTTGTTCT
ELF3	С	TC
Human-	ATGTGTGACCGGAATGGTGG	AGTCCTGGATACATGCTACT
IRF8		GTC
Human-	ATGATGGCTTATTACAGTGGC	GTCGGAGATTCGTAGCTGGA
IL-1β	AA	
Human-	ACTCACCTCTTCAGAACGAA	CCATCTTTGGAAGGTTCAGG
IL-6	TTG	TTG
Human-	TTTTGCCAAGGAGTGCTAAA	AACCCTCTGCACCCAGTTTT
IL-8	GA	С
Human-	GTGGCATTCAAGGAGTACCT	TGATGGCCTTCGATTCTGGA
CXCL10	С	TT
Human-	AGTCTTCCAATCCTACTGTTG	TCCCCGTCACCTCCAATCC
MMP3	СТ	
Human-	CCTCTCTCTAATCAGCCCTCT	GAGGACCTGGGAGTAGATG
TNF-α	G	AG
Mouse-	AGGTCGGTGTGAACGGATTT	TGTAGACCATGTAGTTGAGG
Gapdh	G	TCA
Mouse-	GCAACTGTTCCTGAACTCAA	ATCTTTTGGGGTCCGTCAAC
Il1β	СТ	Т
Mouse-	GCAACTGTTCCTGAACTCAA	ATCTTTTGGGGTCCGTCAAC
I11β	СТ	Т
Mouse-Il6	CTGCAAGAGACTTCCATCCA	AGTGGTATAGACAGGTCTGT
	G	TGG
Mouse-	CAGGCGGTGCCTATGTCTC	CGATCACCCCGAAGTTCAGT
Tnf-α		AG

Appendix Table 3. List of primer sequences in this study.

Mouse-	CTGGACAGCCAGACACTAAA	CTCGCGGCAAGTCTTCAGA
Mmp9	G	G
Mouse-	CTCCCGTGGCTTCTAGTGC	GCCTTAGTTTGGACAGGATC
Tgfb		TG
Mouse-	CGCAGGTTCTTGGTCACTGT	TGTTCACGAAAGCCAGAGC
p16		G
Primer for	shRNA:	
shNC	CCGGCAACAAGATGAAGAG	AATTCAAAAACAACAAGAT
	CACCAACTCGAGTTGGTGCT	GAAGAGCACCAACTCGAGT
	CTTCATCTTGTTGTTTTTG	TGGTGCTCTTCATCTTGTTG
shWTAP#	CCGGGCAAGAGTGTACTACT	AATTCAAAAAGCAAGAGTG
2	CAAATCTCGAGATTTGAGTA	TACTACTCAAATCTCGAGAT
	GTACACTCTTGCTTTTTG	TTGAGTAGTACACTCTTGC
shWTAP#	CCGGGGCAAGTACACAGATC	AATTCAAAAAGGCAAGTAC
3	TTAACCTCGAGGTTAAGATC	ACAGATCTTAACCTCGAGGT
	TGTGTACTTGCCTTTTTG	TAAGATCTGTGTACTTGCC
shELF3#1	CCGGCCGAAAGCTGAGCAA	AATTCAAAAACCGAAAGCT
	AGAGTACTCGAGTACTCTTT	GAGCAAAGAGTACTCGAGT
	GCTCAGCTTTCGGTTTTTG	ACTCTTTGCTCAGCTTTCGG
shELF3#2	CCGGGCCATGAGGTACTACT	AATTCAAAAAGCCATGAGGT
	ACAAACTCGAGTTTGTAGTA	ACTACTACAAACTCGAGTTT
	GTACCTCATGGCTTTTTG	GTAGTAGTACCTCATGGC
shIRF8#1	CCGGCAGTAGCATGTATCCA	AATTCAAAAACAGTAGCATG
	GGACTGATTCTCGAGAATCA	TATCCAGGACTGATTCTCGA
	GTCCTGGATACATGCTACTGT	GAATCAGTCCTGGATACATG
	TTTTG	CTACTG
shIRF8#2	CCGGGGAAACACGCTGGCA	AATTCAAAAAGGAAACACG
	AGCAAGATTACTCGAGTAAT	CTGGCAAGCAAGATTACTCG
	CTTGCTTGCCAGCGTGTTTC	AGTAATCTTGCTTGCCAGCG
	CTTTTTG	TGTTTCC
Primer for	plasmids or promoter:	
LV-WTAP	CCGGAATTCCGGATGACCAA	GCTCTAGAGCTTACAAAACT
	CGAAGAACCT	GAACCCTGTACA
LV-ELF3	CCGGAATTCCGGATGGCTGC	TGCTCTAGAGCATCAGTTCC

	AACCTGTGAG	GACTCTGGAG
LV-IRF8	CCGGAATTCCGGATGTGTGA	GCTCTAGAGCTTAGACGGTG
	CCGGAATGGT	ATCTGTTGGT
IRF8-	CGGGGTACCCCGTGCCTCCC	CCGCTCGAGCGGACTGTGC
promoter	GATATCTGAGG	CTACCTGCCGCCGT
Primers fo	r IRF8 promoter site-directed muta	igenesis:
ELF3	GTTTAAGCCAGacgaTGTAGTC	CAAGACTACAtcgtCTGGCTTA
binding	TTG	AAC
site1		
mutation:		
ELF3	CACCTGCCCCAgcgaATTTTAG	TGGTCTAAAATtcgcTGGGGC
binding	ACCA	AGGTG
site2		
mutation:		
Primers us	ed for ChIP in the IRF8 promoter:	
Distant	TGTAATTCCAGAGAATAAAG	CGCGGGACACGGGCGCCCT
region:	AA	
ELF3	CACTATATCTAGCACATAGTA	TTCTGCTCTTATTTAATGGGT
binding	G	А
site1:		
ELF3	ATAACGCGCGGGGGGGCATCA	CCCGCCGGTCTCCGCCTTCA
binding	СТ	CG
site 2:		